• cerebral blood flow;
  • perfusion;
  • arterial spin labeling;
  • pCASL;
  • tagging efficiency;
  • labeling efficiency;
  • off-resonance;
  • field inhomogeneity;
  • correction

Pseudo-continuous arterial spin labeling (pCASL) is a very powerful technique to measure cerebral perfusion, which circumvents the problems affecting other continuous arterial spin labeling schemes, such as magnetization transfer and duty cycle. However, some variability in the tagging efficiency of the pCASL technique has been reported. This article investigates the effect of B0 field inhomogeneity on the tagging efficiency of the pCASL pulse sequence as a possible cause of this variability. Both theory and simulated data predict that the efficiency of pseudo-continuous labeling pulses can be degraded in the presence of off-resonance effects. These findings are corroborated by human in vivo measurements of tagging efficiency. On the basis of this theoretical framework, a method utilizing B0 field map information is proposed to correct for the possible loss in tagging efficiency of the pCASL pulse sequence. The efficiency of the proposed correction method is evaluated using numerical simulations and in vivo implementation. The data show that the proposed method can effectively recover the lost tagging efficiency and signal-to-noise ratio of pCASL caused by off-resonance effects. Copyright © 2011 John Wiley & Sons, Ltd.