• 1
    Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009; 324(5930): 10291033.
  • 2
    Brindle KM, Bohndiek SE, Gallagher FA, Kettunen MI. Tumor imaging using hyperpolarized 13C magnetic resonance. Magn. Reson. Med. 2011; 66: 505519.
  • 3
    Brindle K. New approaches for imaging tumour responses to treatment. Nat Rev Cancer 2008; 8(2): 94107.
  • 4
    Day SE, Kettunen MI, Cherukuri MK, Mitchell JB, Lizak MJ, Morris HD, Matsumoto S, Koretsky AP, Brindle KM. Detecting response of rat C6 glioma tumors to radiotherapy using hyperpolarized [1-13C]pyruvate and 13C magnetic resonance spectroscopic imaging. Magn. Reson. Med. 2011; 65: 557563.
  • 5
    Day SE, Kettunen MI, Gallagher FA, Hu D-E, Lerche M, Wolber J, Golman K, Ardenkjaer-Larsen JH, Brindle KM. Detecting tumor response to treatment using hyperpolarized 13C magnetic resonance imaging and spectroscopy. Nat. Med. 2007; 13: 13821387.
  • 6
    Gallagher FA, Kettunen MI, Hu D-E, Jensen PR, in 't Zandt R, Karlsson M, Gisselsson A, Nelson SK, Witney TH, Bohndiek SE, Hansson G, Peitersen T, Lerche MH, Brindle KM. Production of hyperpolarized [1,4-13C2]malate from [1,4-13C2]fumarate is a marker of cell necrosis and treatment response in tumors. Proc. Natl Acad. Sci. USA 2009; 106: 19,80119,806.
  • 7
    Kurhanewicz J, Vigneron DB, Brindle K, Chekmenev EY, Comment A, Cunningham CH, DeBerardinis RJ, Green GG, Leach MO, Rajan SS, Rizi RR, Ross BD, Warren WS, Malloy CR. Analysis of cancer metabolism by imaging hyperpolarized nuclei: prospects for translation to clinical research. Neoplasia 2011; 13: 8197.
  • 8
    Witney TH, Kettunen MI, Day SE, Hu D-E, Neves AA, Gallagher FA, Fulton SM, Brindle KM. A comparison between radiolabeled fluorodeoxyglucose uptake and hyperpolarized 13C-labeled pyruvate utilization as methods for detecting tumor response to treatment. Neoplasia 2009; 11: 574582.
  • 9
    Witney TH, Kettunen MI, Hu D-E, Gallagher FA, Bohndiek SE, Napolitano R, Brindle KM. Detecting treatment response in a model of human breast adenocarcinoma using hyperpolarised [1-13C]pyruvate and [1,4-13C2]fumarate. Br. J. Cancer 2010; 103: 14001406.
  • 10
    Ardenkjaer-Larsen JH, Fridlund B, Gram A, Hansson G, Hansson L, Lerche MH, Servin R, Thaning M, Golman K. Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR. Proc. Natl Acad. Sci. USA 2003; 100: 10,15810,163.
  • 11
    Albers MJ, Bok R, Chen AP, Cunningham CH, Zierhut ML, Zhang VY, Kohler SJ, Tropp J, Hurd RE, Yen YF, Nelson SJ, Vigneron DB, Kurhanewicz J. Hyperpolarized 13C lactate, pyruvate, and alanine: noninvasive biomarkers for prostate cancer detection and grading. Cancer Res. 2008; 68: 86078615.
  • 12
    Nelson SJ, Kurhanewicz J, Vigneron DB, Larson P, Harzstarck A, Ferrone M, van Criekinge M, Chang J, Bok R, Park I, Reed G, Carvajal L, Crane J, Ardenkjaer-Larsen JH, Chen A, Hurd R, Odegardstuen L-I, Tropp J. Proof of concept clinical trial of hyperpolarized C-13 pyruvate in patients with prostate cancer. Proc. Intl Soc. Mag. Reson. Med. 2012; 2: 274.
  • 13
    Tayler MCD, Marco-Rius I, Kettunen MI, Brindle KM, Levitt MH, Pileio G. Direct enhancement of nuclear singlet order by dynamic nuclear polarization. J. Am. Chem. Soc. 2012; 134: 76687671.
  • 14
    Ghosh RK, Kadlecek SJ, Ardenkjaer-Larsen JH, Pullinger BM, Pileio G, Levitt MH, Kuzma NN, Rizi RR. Measurements of the persistent singlet state of N2O in blood and other solvents-potential as a magnetic tracer. Magn. Reson. Med. 2011; 66: 11771180.
  • 15
    Bornet A, Jannin S, Bodenhausen G. Three-field NMR to preserve hyperpolarized proton magnetization as long-lived states in moderate magnetic fields. Chem. Phys. Lett. 2011; 512: 151154.
  • 16
    Pileio G, Carravetta M, Levitt MH. Storage of nuclear magnetization as long-lived singlet order in low magnetic field. Proc. Natl Acad. Sci. USA 2010; 107: 17,13517,139.
  • 17
    Sarkar R, Vasos PR, Bodenhausen G. Singlet-state exchange NMR spectroscopy for the study of very slow dynamic processes. J. Am. Chem. Soc. 2007; 129: 328334.
  • 18
    Tayler MCD, Levitt MH. Singlet nuclear magnetic resonance of nearly-equivalent spins. Phys. Chem. Chem. Phys. 2011; 13: 55565560.
  • 19
    Levitt MH. Singlet nuclear magnetic resonance. Annu. Rev. Phys. Chem. 2012; 63: 89105.
  • 20
    Hurd RE, Chen A, Cunningham CH, Tropp J. Scalar coupling patterns in hyperpolarized spin systems: JCC spectral pattern in hyperpolarized 1,2-[13C]-pyruvate. A potential indirect measure of polarization. In: Experimental Nuclear Magnetic Resonance Conference, Pacific Grove, CA. 2009.
  • 21
    Lau JY, Chen AP, Gu YP, Cunningham CH. A calibration-based approach to real-time in vivo monitoring of pyruvate C1 and C2 polarization using the JCC spectral asymmetry. NMR Biomed. 2013. DOI: 10.1002/nbm.2942.
  • 22
    Tropp J Multiplet asymmetry and multi-spin order in liquid-state NMR spectra of hyperpolarized compounds. Proc. Intl Soc. Magn. Reson. Med. 2010; 18: 1026.
  • 23
    Janick PA, Hackney DB, Grossman RI, Asakura T. MR imaging of various oxidation states of intracellular and extracellular hemoglobin. Am. J. Neuroradiol. 1991; 12: 891897.
  • 24
    Endre ZH, Kuchel PW. Viscosity of concentrated solutions and of human erythrocyte cytoplasm determined from NMR measurement of molecular correlation times. The dependence of viscosity on cell volume. Biophys. Chem. 1986; 24: 337355.
  • 25
    Pullinger BM, Kadlecek SJ, Kuzma NN, Rizi RR. The influence of bovine serum albumin on the T1 relaxation of [1-13C]pyruvate – a study at low fields. Proc. Intl Soc. Magn. Reson. Med. 2011; 1514.
  • 26
    Moreno KX, Sabelhaus SM, Merritt ME, Sherry AD, Malloy CR. Competition of pyruvate with physiological substrates for oxidation by the heart: implications for studies with hyperpolarized [1-13C]pyruvate. Am. J. Physiol. Heart Circ. Physiol. 2010; 298: H15561564.
  • 27
    Miéville P, Jannin S, Bodenhausen G. Relaxometry of insensitive nuclei: optimizing dissolution dynamic nuclear polarization. J. Magn. Reson. 2011; 210: 137140.
  • 28
    Silvennoinen MJ, Kettunen MI, Kauppinen RA. Effects of hematocrit and oxygen saturation level on blood spin–lattice relaxation. Magn. Reson. Med. 2003; 49: 568571.
  • 29
    Lin AL, Qin Q, Zhao X, Duong TQ. Blood longitudinal (T1) and transverse (T2) relaxation time constants at 11.7 Tesla. Magn. Reson. Mater Phys. 2012; 25: 245249.
  • 30
    Tayler MCD, Levitt MH. Paramagnetic relaxation of nuclear singlet states. Phys. Chem. Chem. Phys. 2011; 13: 91289130.