SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    R. Ahuja, private communication, 1999.
  • 2
    Y.P. Aneja, V. Aggarwal, and K.P.K. Nair, Shortest chain subject to side constraints, Networks 13 (1983), 295302.
  • 3
    C. Barnhart, N. Boland, L. Clarke, E.L. Johnson, G.L. Nemhauser, and R.G. Shenoi, Flight string models for aircraft fleeting and routing, Trans Sci 32 (1998), 208220.
  • 4
    J.E. Beasley and N. Christofides, An algorithm for the resource constrained shortest path problem, Networks 19 (1989), 379394.
  • 5
    B.V. Cherkassky, A.V. Goldberg, and T. Radzik, Shortest paths algorithms: Theory and experimental evaluation, Math Program 73 (1996), 129174.
  • 6
    M. Desrochers and F. Soumis, A generalized permanent labeling algorithm for the shortest path problem with time windows, INFOR 26 (1988), 191212.
  • 7
    J. Desrosiers, Y. Dumas, M. Solomon, and F. Soumis, “Time constrained routing and scheduling,” Handbook in operations research and management science 8: Network routing, M.O.Ball, T.L.Magnanti, C.L.Monma, and G.L.Nemhauser (Editors), North-Holland, Amsterdam, 1995, pp. 35139.
  • 8
    J. Desrosiers, P. Pelletier, and F. Soumis, Plus court chemin avec constraints d'horaires, RAIRO 17 (1983), 357377 (in French).
  • 9
    I. Dumitrescu, Constrained path and cycle problems, Ph.D. Thesis, Department of Mathematics and Statistics, The University of Melbourne, 2002.
  • 10
    I. Dumitrescu and N. Boland, Algorithms for the weight constrained shortest path problem, ITOR 8 (2001), 1530.
  • 11
    D. Eppstein, Finding the k shortest paths, SIAM J Comput 28 (1997), 652673.
  • 12
    M.R. Garey and D.S. Johnson, Computers and intractability: A guide to the theory of NP-completeness, Freeman, San Francisco, 1979.
  • 13
    J. Halpern and J. Priess, Shortest paths with time constraints on moving and parking, Networks 4 (1974), 241253.
  • 14
    G.Y. Handler and I. Zang, A dual algorithm for the constrained shortest path problem, Networks 10 (1980), 293309.
  • 15
    R. Hassin, Approximation schemes for the restricted shortest path problem, Math Oper Res 17 (1992), 3642.
  • 16
    B. Jaumard, F. Semet, and T. Vovor, A two-phase resource constrained shortest path algorithm for acyclic graphs, Les Cahier du GERAD, G-96-48, 1996.
  • 17
    V. Jimenez and A. Marzal, Computing the k shortest paths: A new algorithm and an experimental comparison, Proc 3rd Workshop on Algorithm Engineering (WAE99), LNCS 1668, 1999, pp. 1529.
  • 18
    H.C. Joksch, The shortest route problem with constraints, J Math Anal Appl 14 (1966), 191197.
  • 19
    J.E. Kelley, The cutting plane method for solving convex programs, J SIAM 8 (1960), 703712.
  • 20
    E.L. Lawler, Combinatorial optimization: networks and matroids, Holt, Rinehart and Winston, New York, 1976.
  • 21
    D.H. Lorenz and D. Raz, A simple efficient approximation scheme for the restricted shortest path problem, Oper Res Lett 28 (2001), 213219.
  • 22
    K. Mehlhorn and M. Ziegelmann, Resource constraint shortest paths, 7th Ann European Symp on Algorithms (ESA2000), LNCS 1879, 2000, pp. 326337.
  • 23
    I. Murthy and S-S. Her, Solving min–max shortest-path problems on a network, Naval Res Log 39 (1992), 669683.
  • 24
    I. Murthy and K. Hutchinson, Effective pruning methods in labeling algorithms to solve constrained shortest path problems, unpublished manuscript, 1989.
  • 25
    C. Ribeiro and M. Minoux, A heuristic approach to hard constrained shortest path problems, Discr Appl Math 10 (1985), 125137.
  • 26
  • 27
    A. Warburton, Approximation of Pareto optima in multiple-objective, shortest-path problems, Oper Res 35 (1987), 7079.
  • 28
    J.Y. Yen, Finding the k-shortest, loopless paths in a network, Manage Sci 17 (1971), 711715.
  • 29
    M. Zabarankin, S. Uryasev, and P. Pardalos, Optimal risk path algorithms, Cooperative control and optimization, R.Murphey and P.Pardalos (Editors), Kluwer, Dordrecht 2001, pp. 271303.
  • 30
    M. Ziegelmann, Constrained shortest paths and related problems, PhD Thesis, Universität des Saarlandes, 2001.