SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    R.K. Ahuja, T.L. Magnanti, J.B. Orlin, Network flows: Theory, algorithms, and applications, Prentice-Hall, Englewood Cliffs, NJ, 1993.
  • 2
    A. Ali, J.L. Kennington, Technical Report 77003, Dept. of Ind. Eng. and Operations Research, Southern Methodist University, Dallas, 1977.
  • 3
    E. Balas, S. Ceria, G. Cornuéjols, A lift-and-project cutting plane algorithm for mixed 0-1 programs, Math Program 58 ( 1993), 295324.
  • 4
    E. Balas, S. Ceria, G. Cornuéjols, N. Natraj, Gomory cuts revisited, Oper Res Lett 19 ( 1996), 19.
  • 5
    F. Barahona, R. Anbil, The volume algorithm: Producing primal solutions with a subgradient method, Math Program 87 ( 2000), 385399.
  • 6
    F. Barahona, D. Jensen, Plant location with minimum inventory, Math Program 83 ( 1998), 101111.
  • 7
    W. Ben-Ameur, Constrained length connectivity and survivable networks, Networks 36 ( 2000), 1733.
  • 8
    W. Ben-Ameur, L. Pham, Design of survivable networks based on end-to-end rerouting, In Proc of the third international workshop on Design of reliable networks, Budapest, Oct 2001.
  • 9
    H. Ben Amor, J. Desrosiers, A proximal trust-region algorithm for column generation stabilization, Comput Oper Res 33 ( 2006), 910927.
  • 10
    J. F. Benders, Partitioning procedures for solving mixed variables programming problems, Numer Math 4 ( 1962), 238252.
  • 11
    R.E. Bixby, J.W. Gregory, I.J. Lustig, R.E. Marsten, D.F. Shanno, Very large-scale linear programming: A case study in combining interior point and simplex methods, Oper Res 40 ( 1992), 885897.
  • 12
    U. Brännlund, A generalized subgradient method with relaxation step, Math Program 71 ( 1995), 207219.
  • 13
    P.M. Camerini, L. Fratta, F. Maffioli, On improving relaxation methods by modified gradient techniques, Math Program Stud 3 ( 1975), 2634.
  • 14
    W. Cheney, A.A. Goldstein, Newton's method for convex programming and Chebyshev approximation, Numer Math 1–5 ( 1959), 253268.
  • 15
    V. Chvátal, Edmonds polytopes and a hierarchy of combinatorial problems, Discrete Math 4 ( 1973), 305337.
  • 16
    CPLEX, CPLEX callable library, CPLEX Optimization, Inc., Houston.
  • 17
    G.B. Dantzig, R. Fulkerson, S.M. Johnson, Solution of a large-scale traveling salesman problem, Oper Res 2 ( 1954), 393410.
  • 18
    G.B. Dantzig, P. Wolfe, The decomposition algorithm for linear programming, Econometrica 29 ( 1961), 767778.
  • 19
    O. Du Merle, J.L. Goffin, J.P. Vial, On the comparative behavior of Kelley's cutting plane method and the analytic center cutting plane method, Technical report, Department of Management Studies, University of Geneva, Switzerland, 1996.
  • 20
    O. Du Merle, D. Villeneuve, J. Desrosiers, P. Hansen, Stabilized column generation, SIAM Discrete Math 194 ( 1999), 229237.
  • 21
    J. Elzinga, T. G. Moore, A central cutting plane algorithm for the convex programming problem, Math Program 8 ( 1973), 134145.
  • 22
    A. Frangioni, G. Gallo, A bundle type dual-ascent approach to linear multicommodity min cost flow problems, INFORMS J Comp 11 ( 1999), 370393.
  • 23
    A.M. Geoffrion, Generalized benders decomposition, J Optimizat Theory Appl 10 ( 1972), 237260.
  • 24
    P.C. Gilmore, R.E. Gomory, A linear programming approach to the cutting stock problem—Part II, Oper Res 11 ( 1963), 863888.
  • 25
    J. L. Goffin, A. Haurie, J.P. Vial, D.L. Zhu, Using central prices in the decomposition of linear programs, Eur J Oper Res 64 ( 1993), 393409.
  • 26
    J. L. Goffin, J.P. Vial, Cutting planes and column generation techniques with the projective algorithm, J Optimizat Theory Appl 65 ( 1998), 409429.
  • 27
    J. L. Goffin, J.P. Vial, Convex nondifferentiable optimization: A survey focussed on the analytic center cutting plane method, Optimizat Methods Software 17 ( 2002), 805867.
  • 28
    D. Goldfarb, Using the steepest-edge simplex algorithm to solve sparse linear programs, Sparse Matrix Computations, Academic Press, New York, 1976, pp. 227240.
  • 29
    R.E. Gomory, Outline of an algorithm for integer solutions to linear programs, Bull Am Math Soc 64 ( 1958), 275278.
  • 30
    M. Grötschel, L. Lovász, A. Schrijver, Geometric algorithms and combinatorial optimization, Springer-Verlag, Berlin, 1988.
  • 31
    P.M.J. Harris, Pivot selection methods of the devex LP code, Math Program 5 ( 1974), 128.
  • 32
    K. Holmberg, K. Jörnsten, A simple modification of Dantzig-Wolfe decomposition, Optimization 34 ( 1995), 129145.
  • 33
    M. Iri, On an extension of the maximum-flow minimum-cut theorem to multicommodity flows, J Oper Res Soc Jpn 13 ( 1971), 129135.
  • 34
    M. Jünger, G. Reinelt, S. Thienel, “Practical problem solving with cutting plane algorithms in combinatorial optimization,” Combinatorial Optimization, DIMACS Series in Discrete Mathematics and Computer Science, W.Cook, L.Lováz, P.Seymour (Editors), AMS, Providence, 1995, pp. 111152.
  • 35
    J. E. Kelley, The cutting-plane method for solving convex programs, J SIAM 8 ( 1960), 703712.
  • 36
    H. Kerivin, A.R. Mahjoub, Design of survivable networks: A survey, Networks 46 ( 2005), 121.
  • 37
    L.G. Khachian, A polynomial algorithm in linear programming, Soviet Math Doklady 20 ( 1979), 191194.
  • 38
    S. Kim, K.N. Chang, J.Y. Lee, A descent method with linear programming sub-problems for nondifferentiable convex optimization, Math Program 71 ( 1995), 1728.
  • 39
    C. Lemaréchal, An extension of Davidon methods to nondifferentiable problems, Math Program 3 ( 1975), 95109.
  • 40
    M.E. Lübbecke, J. Desrosiers, Selected topics in column generation, Oper Res 53 ( 2005), 10071023.
  • 41
    D. Luenberger, Linear and nonlinear programming, Addison Wesley, Reading, MA, 1984.
  • 42
    T. Magnanti, S. Raghavan, Strong formulations for network design problems with connectivity requirements, Networks 45 ( 2005), 6179.
  • 43
    T. Magnanti, R.T. Wong, Accelerating Benders decomposition: Algorithmic enhancement and model selection criteria, Oper Res 29 ( 1981), 464484.
  • 44
    P. Mahey, “Decomposition methods for mathematical programming,” Handbook of Applied Optimization, P.Pardalos, G.C.Resende (Editors), Oxford University Press, New York, 2002.
  • 45
    R.E. Marsten, W.W. Hogan, J.W. Blankenship, The Boxstep method for large-scale optimization, Oper Res 23 ( 1975), 389405.
  • 46
    R.K. Martinson, J. Tind, An interior point method in Dantzig-Wolfe decomposition, Comput Oper Res 26 ( 1999), 11951216.
  • 47
    M. Minoux, Network synthesis and optimum network design problems: Models, solution methods and applications, Networks 19 ( 1989), 313360.
  • 48
    J.E. Mitchell, P. Pardalos, M.G.C. Resende, Interior point methods for combinatorial optimization, Handbook of Combinatorial Optimization, D.-Z.Du, P.Pardalos (Editors), Kluwer Academic Publishers, New York, 1998.
  • 49
    K. Murakami, S. Kim, Optimal capacity and flow assignment for self-healing ATM networks based on line and end-to-end restoration, IEEE Trans Networking 6 ( 1998), 207221.
  • 50
    G.L. Nemhauser, L.A. Wolsey, Integer and combinatorial optimization, John Wiley, New York, 1988.
  • 51
    Yu. Nesterov, Cutting plane algorithms from analytic centers: Efficiency estimates, Math Program 56 ( 1995), 149176.
  • 52
    K. Onaga, O. Kakusho, On feasibility conditions of multicommodity flows in networks, Trans Circuit Theory 4 ( 1971), 425429.
  • 53
    M. Padberg, G. Rinaldi, A branch-and-cut algorithm for the resolution of large-scale symmetric traveling salesman problems, SIAM Rev 33 ( 1991), 60100.
  • 54
    L.M. Rousseau, M. Gendreau, D. Feillet, Interior Point Stabilization for Column Generation, Centre de recherche sur les transports, Université de Montréal, Montreal, 2003.
  • 55
    M. Stoer, G. Dahl, A polyhedral approach to multicommodity survivable network design, Numer Math 68 ( 1994), 149167.
  • 56
    P. M. Vaidya, A new algorithm for minimizing convex functions over convex sets, Math Program 73 ( 1996), 291341.
  • 57
    A. F. VeinottJr, The supporting hyperplane method for unimodal programming, Oper Res 1 ( 1967), 147152.
  • 58
    P. Wentges, Weighted Dantzig-Wolfe decomposition for linear mixed-integer programming, Int Trans Oper Res 4 ( 1997), 151162.
  • 59
    W.E. Wilhelm, A technical review of column generation in integer programming, Optimizat Eng 2 ( 2001), 159200.
  • 60
    P. Wolfe, “Convergence theory in nonlinear programming,” Integer and Nonlinear Programming, J.Abadie (Editor), North Holland, Amsterdam, 1970, pp. 136.
  • 61
    P. Wolfe, A method of conjugate subgradients for minimizing nondifferentiable convex functions, Math Program 3 ( 1975), 145173.