• path location;
  • median path;
  • outerplanar graphs


In this article, we study the median path problem without length restrictions on the class of connected outerplanar graphs, assuming that weights equal to 1 are assigned to the edges of a graph G, and nonnegative weights are associated to its vertices. We provide an equation image time algorithm, where n is the number of vertices of G and k is the number of blocks in G. As a byproduct, when G is a biconnected outerplanar graph, we provide a linear time algorithm to find a median path between two fixed vertices of G without restrictions on the length. In the literature, we did not find polynomial time algorithms for this problem on such classes of graphs. © 2011 Wiley Periodicals, Inc. NETWORKS, 2011