SEARCH

SEARCH BY CITATION

Cited in:

CrossRef

This article has been cited by:

  1. 1
    R. Mooney, Auditory-vocal mirroring in songbirds, Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 1644, 20130179

    CrossRef

  2. 2
    Brian Lewandowski, Alexei Vyssotski, Richard H.R. Hahnloser, Marc Schmidt, At the interface of the auditory and vocal motor systems: NIf and its role in vocal processing, production and learning, Journal of Physiology-Paris, 2013, 107, 3, 178

    CrossRef

  3. 3
    Raghav Rajan, Allison J. Doupe, Behavioral and Neural Signatures of Readiness to Initiate a Learned Motor Sequence, Current Biology, 2013, 23, 1, 87

    CrossRef

  4. 4
    T. A. Larson, T.-W. Wang, S. D. Gale, K. E. Miller, N. M. Thatra, M. L. Caras, D. J. Perkel, E. A. Brenowitz, Postsynaptic neural activity regulates neuronal addition in the adult avian song control system, Proceedings of the National Academy of Sciences, 2013, 110, 41, 16640

    CrossRef

  5. 5
    Arij Daou, Frank Johnson, Wei Wu, Richard Bertram, A computational tool for automated large-scale analysis and measurement of bird-song syntax, Journal of Neuroscience Methods, 2012, 210, 2, 147

    CrossRef

  6. 6
    Alexander Hanuschkin, Markus Diesmann, Abigail Morrison, A reafferent and feed-forward model of song syntax generation in the Bengalese finch, Journal of Computational Neuroscience, 2011, 31, 3, 509

    CrossRef

  7. 7
    Michale S Fee, Michael A Long, New methods for localizing and manipulating neuronal dynamics in behaving animals, Current Opinion in Neurobiology, 2011, 21, 5, 693

    CrossRef

  8. 8
    Huimeng Lei, Richard Mooney, Manipulation of a Central Auditory Representation Shapes Learned Vocal Output, Neuron, 2010, 65, 1, 122

    CrossRef

  9. 9
    Eugene Akutagawa, Masakazu Konishi, New brain pathways found in the vocal control system of a songbird, Journal of Comparative Neurology, 2010, 518, 15
  10. 10
    Dezhe Z. Jin, Generating variable birdsong syllable sequences with branching chain networks in avian premotor nucleus HVC, Physical Review E, 2009, 80, 5

    CrossRef

  11. 11
    Wei Wu, John A. Thompson, Richard Bertram, Frank Johnson, A statistical method for quantifying songbird phonology and syntax, Journal of Neuroscience Methods, 2008, 174, 1, 147

    CrossRef

  12. 12
    Haruhito Horita, Kazuhiro Wada, Erich D. Jarvis, Early onset of deafening-induced song deterioration and differential requirements of the pallial-basal ganglia vocal pathway, European Journal of Neuroscience, 2008, 28, 12
  13. 13
    John A. Thompson, Frank Johnson, HVC microlesions do not destabilize the vocal patterns of adult male zebra finches with prior ablation of LMAN, Developmental Neurobiology, 2007, 67, 2
  14. 14
    Dezhe Z. Jin, Fethi M. Ramazanoğlu, H. Sebastian Seung, Intrinsic bursting enhances the robustness of a neural network model of sequence generation by avian brain area HVC, Journal of Computational Neuroscience, 2007, 23, 3, 283

    CrossRef

  15. 15
    Jun Nishikawa, Kazuo Okanoya, The Brain & Neural Networks, 2007, 14, 2, 79

    CrossRef

  16. 16
    Miki TAKAHASI, Hiroko KAGAWA, Maki IKEBUCHI, Kazuo OKANOYA, Case studies of song and call learning by a hybrid Bengalese–Zebra Finch and Bengalese-fostered Zebra Finches: Assessing innate factors in vocal learning, Ornithological Science, 2006, 5, 1, 85

    CrossRef

  17. 17
    John A. Thompson, Frank Johnson, HVC microlesions do not destabilize the vocal patterns of adult male zebra finches with prior ablation of LMAN, Journal of Neurobiology, 2006,

    CrossRef

  18. 18
    Anthony Leonardo, Degenerate coding in neural systems, Journal of Comparative Physiology A, 2005, 191, 11, 995

    CrossRef

  19. 19
    Miki Takahasi, Maki Ikebuchi, Kazuo Okanoya, Spatiotemporal properties of visual stimuli for song induction in Bengalese finches, NeuroReport, 2005, 16, 12, 1339

    CrossRef