SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Kailath T, Sayed AH. Displacement structure: theory and applications. SIAM Review 1995; 37(3):297386.
  • 2
    Voevodin VV, Tyrtyshnikov EE. Computational Processes with Toeplitz Matrices. Nauka: Moscow, 1987 (in Russian).
  • 3
    Bini DA, Meini B. Effective methods for solving banded Toeplitz systems. SIAM Journal on Matrix Analysis and Applications 1999; 20:700719.
  • 4
    Bini DA, Meini B. The cyclic reduction algorithm: from Poisson equation to stochastic processes and beyond. In memoriam of Gene H. Golub. Numerical Algorithms 2009; 51(1):2360.
  • 5
    Favati P, Lotti G, Menchi O. Recursive algorithms for unbalanced banded Toeplitz systems. Numerical Linear Algebra with Applications 2009; 7:561587.
  • 6
    Stewart GW. On the solution of block Hessenberg systems. Linear Algebra and its Applications 1995; 2:287296.
  • 7
    Lotti G. A note on the solution of not balanced banded Toeplitz systems. Numerical Linear Algebra with Applications 2007; 8:645657.
  • 8
    Chesnokov A, Van Barel M. A direct method to solve block banded block Toeplitz systems with non-banded Toeplitz blocks. Journal of Computational and Applied Mathematics 2010; 234:14851491.
  • 9
    Heinig G, Rost K. Algebraic Methods for Toeplitz-like Matrices and Operators. Birkhäuser: Basel, 1984.
  • 10
    Zamarashkin NL, Oseledets IV, Tyrtyshnikov EE. The tensor structure of the inverse of a Toeplitz band matrix. Doklady Mathematics 2009; 80(2):669670.
  • 11
    Zhang F (ed.). The Schur Complement and its Applications. Springer: New York, 2005.
  • 12
    Golub GH, Van Loan CF. Matrix Computations, (3rd edn). The John Hopkins University Press: Baltimore, 1996.
  • 13
    Fischer D, Golub G, Hald O, Leiva C, Widlund O. On Fourier–Toeplitz methods for separable elliptic problems. Mathematics of Computation 1974; 28:349368.
  • 14
    Amodio P, Brugnano L. The conditioning of Toeplitz band matrices. Mathematical and Computer Modelling 1999; 23(10):2942.
  • 15
    Kågström B, Poromaa P. Computing eigenspaces with specified eigenvalues of a regular matrix pair (A,B) and condition estimation: theory, algorithms and software. Numerical Algorithms 1996; 12:369407.
  • 16
    Malyshev A, Sadkane M. Using the Sherman–Morrison–Woodbury inversion formula for a fast solution of tridiagonal block Toeplitz systems. Linear Algebra and its Applications 2011; 435:26932707.
  • 17
    Goodman TNT, Micchelli CA, Rodriguez G, Seatzu S. Spectral factorization of Laurent polynomials. Advances in Computational Mathematics 1997; 4:429454.
  • 18
    Bini DA, Fiorentino G, Gemignani L, Meini B. Effective fast algorithms for polynomial spectral factorization. Numerical Algorithms 2003; 34(2):217228.
  • 19
    Sayed AH, Kailath T. A survey of spectral factorization methods. Numerical Linear Algebra with Applications 2001; 8:467496.
  • 20
    Gohberg I, Lancaster P, Rodman L. Matrix Polynomials. Academic Press: New York, 1982.
  • 21
    Böttcher A, Grudsky SM. Spectral Properties of Banded Toeplitz Matrices. SIAM: Philadelphia, PA, 2005.
  • 22
    Bhatia R. Positive Definite Matrices. Princeton University Press: Princeton, 2006.
  • 23
    Anderson N, Saff EB, Varga RS. An extension of the Enestrom–Kakeya theorem and its sharpness. SIAM Journal on Mathematical Analysis 1981; 12(1):1022.