A corrected XFEM approximation without problems in blending elements

Authors

  • Thomas-Peter Fries

    Corresponding author
    1. Institute for Computational Analysis of Technical Systems, RWTH Aachen University, Steinbachstr. 53 B, 52074 Aachen, Germany
    • Institute for Computational Analysis of Technical Systems, RWTH Aachen University, Steinbachstr. 53 B, 52074 Aachen, Germany
    Search for more papers by this author

Abstract

The extended finite element method (XFEM) enables local enrichments of approximation spaces. Standard finite elements are used in the major part of the domain and enriched elements are employed where special solution properties such as discontinuities and singularities shall be captured. In elements that blend the enriched areas with the rest of the domain problems arise in general. These blending elements often require a special treatment in order to avoid a decrease in the overall convergence rate. A modification of the XFEM approximation is proposed in this work. The enrichment functions are modified such that they are zero in the standard elements, unchanged in the elements with all their nodes being enriched, and varying continuously in the blending elements. All nodes in the blending elements are enriched. The modified enrichment function can be reproduced exactly everywhere in the domain and no problems arise in the blending elements. The corrected XFEM is applied to problems in linear elasticity and optimal convergence rates are achieved. Copyright © 2007 John Wiley & Sons, Ltd.

Ancillary