Get access

A new nine-node solid-shell finite element using complete 3D constitutive laws


Francis Sabourin, LAMCOS, INSA de Lyon, 20 Avenue A. Einstein, Villeurbanne 69621, France.



The solid-shell element presented in this paper has nine nodes: eight are classically located at the apexes and are fitted with three translational DOFs whereas the ninth is sited at the center and is endowed with only one DOF; a displacement along the ‘thickness’ direction. Indeed, to be used for modeling thin structures under bending effects, this kind of finite element has a favored direction where several integration points are distributed. Besides, there is solely one ‘in-plane’ quadrature point to avoid locking phenomena and prohibitive CPU costs for large nonlinear computations. Because a reduced integration is not enough to completely prevent transverse shear locking, a shear–strain field is assumed. Compared with the other eight-node ‘solid-shell' bricks, the presence of a supplementary node has a main aim: getting a linear normal strain component which, along with a full three-dimensional constitutive strain–stress behavior, allows to achieve similar results in bending cases as those obtained with the usual plane stress state hypothesis. For that, the ninth node DOF plays the role of an extra parameter essential for a quadratic interpolation of the displacement in the thickness direction. The advantage is that this DOF has a physical meaning and, for instance, a strength equivalent to a normal pressure can be prescribed. With a suitable nodal numbering, the band width is not significantly increased and meshes can easily be generated because the extra nodes are always located at element centers. To emphasize the peculiar features of such an element, a set of examples (linear and nonlinear) is carried out. Numerous comparisons with other elements show pretty good results in bending dominating problems while adding the event of a normal stress component in sheet metal forming simulations with double side contact. Copyright © 2012 John Wiley & Sons, Ltd.

Get access to the full text of this article