Get access

Measure transformation and efficient quadrature in reduced-dimensional stochastic modeling of coupled problems

Authors


  • Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

M. Arnst, Université de Liège, B52/3, Chemin des Chevreuils 1, B-4000 Liège, Belgium.

E-mail: maarten.arnst@ulg.ac.be

SUMMARY

Coupled problems with various combinations of multiple physics, scales, and domains are found in numerous areas of science and engineering. A key challenge in the formulation and implementation of corresponding coupled numerical models is to facilitate the communication of information across physics, scale, and domain interfaces, as well as between the iterations of solvers used for response computations. In a probabilistic context, any information that is to be communicated between subproblems or iterations should be characterized by an appropriate probabilistic representation. Although the number of sources of uncertainty can be expected to be large in most coupled problems, our contention is that exchanged probabilistic information often resides in a considerably lower-dimensional space than the sources themselves. In this work, we thus propose to use a dimension reduction technique for obtaining the representation of the exchanged information, and we propose a measure transformation technique that allows subproblem implementations to exploit this dimension reduction to achieve computational gains. The effectiveness of the proposed dimension reduction and measure transformation methodology is demonstrated through a multiphysics problem relevant to nuclear engineering. Copyright © 2012 John Wiley & Sons, Ltd.

Get access to the full text of this article

Ancillary