• shells;
  • meshfree methods;
  • partition of unity;
  • point-set surfaces;
  • maximum-entropy approximants;
  • nonlinear dimensionality reduction


Calculations on general point-set surfaces are attractive because of their flexibility and simplicity in the preprocessing but present important challenges. The absence of a mesh makes it nontrivial to decide if two neighboring points in the three-dimensional embedding are nearby or rather far apart on the manifold. Furthermore, the topology of surfaces is generally not that of an open two-dimensional set, ruling out global parametrizations. We propose a general and simple numerical method analogous to the mathematical theory of manifolds, in which the point-set surface is described by a set of overlapping charts forming a complete atlas. We proceed in four steps: (1) partitioning of the node set into subregions of trivial topology; (2) automatic detection of the geometric structure of the surface patches by nonlinear dimensionality reduction methods; (3) parametrization of the surface using smooth meshfree (here maximum-entropy) approximants; and (4) gluing together the patch representations by means of a partition of unity. Each patch may be viewed as a meshfree macro-element. We exemplify the generality, flexibility, and accuracy of the proposed approach by numerically approximating the geometrically nonlinear Kirchhoff–Love theory of thin-shells. We analyze standard benchmark tests as well as point-set surfaces of complex geometry and topology. Copyright © 2012 John Wiley & Sons, Ltd.