SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Robey GP, Fedarko NS, Hefferan TE, Bianco P, Vetter UK, Grzesik W, Friedenstein A, Van Der Pluijm G, Mintz KP, Young MF, Kerr JM, Ibaraki K, Heegaard A-M. Structure and molecular regulation of bone matrix proteins. Journal of Bone and Mineral Research 1993; 8:S483S487.
  • 2
    Henriksson M, Berglund LA, Isaksson P, Lindström T, Nishino T. Cellulose nanopaper structures of high toughness. Biomacromolecules 2008; 9:15791585.
  • 3
    Niskanen K. Paper Physics, Revised edition. Fapet OY: Helsinki, Finland, 2007.
  • 4
    Parkkari J, Kannus P, Palvanen M, Natri A, Vainio J, Aho H, Vuori I, Järvinen M. Majority of hip fractures occur as a result of a fall and impact on the greater trochanter of the femur: a prospective controlled hip fracture study with 206 consecutive patients. Calcified Tissue International 1999; 65:183187.
  • 5
    Edvardsson S, Uesaka T. System dynamics of the open-draw with web adhesion: particle approach. Journal of Applied Mechanics 2010; 77:021909021920.
  • 6
    Kulachenko A, Gradin P, Uesaka T. Tension wrinkling and fluting in heatset web offset printing process. Post-buckling analyses. 13th Fundamental Research Symposium, Cambridge, 11–16 September 2005; 10751099.
  • 7
    Wellmar P, Fellers C, Nilsson F, Delhage L. Crack-tip characterization in paper. Journal of Pulp and Paper Science 1997; 23:J269J276.
  • 8
    Heyden S. Network modelling for the evaluation of mechanical properties of cellulose fiber fluff. Ph.D.-thesis, Lund University, Sweden, 2000.
  • 9
    Silling SA, Bobaru F. Peridynamic modeling of membranes and fibers. International Journal of Non-Linear Mechanics 2005; 40:395409.
  • 10
    Isaksson P, Hägglund R. Structural effects on deformation and fracture of random fiber networks and consequences on continuum models. International Journal of Solids and Structures 2009; 46:23202329.
  • 11
    Isaksson P, Hägglund R. Strain energy distribution in a crack-tip region in random fiber networks. International Journal of Fracture 2009; 156:19.
  • 12
    Isaksson P. An implicit stress gradient plasticity model for describing mechanical behavior of planar fiber networks on a macroscopic scale. Engineering Fracture Mechanics 2010; 77:12401252.
  • 13
    Heyden S, Gustafsson PJ. Simulation of fracture in a cellulose fiber network. Journal of Pulp and Paper Science 1998; 24:160165.
  • 14
    Hägglund R, Isaksson P. On the coupling between macroscopic material degradation and interfiber bond fracture in an idealized fiber network. International Journal of Solids and Structures 2007; 45:868878.
  • 15
    Alfthan J. Micro-mechanically based modelling of mechano-sorptive creep in paper. Ph.D.-Thesis, Royal Institute of Technology, Sweden, 2004.
  • 16
    Geers MGD, Kouznetsova VG, Brekelmans WAM. Multi-scale computational homogenization: Trends and challenges. Journal of Computational and Applied Mathematics 2010; 234:21752182.
  • 17
    Mang HA, Eberhardsteiner J, Hellmich C, Hofstetter K, Jäger A, Lackner R, Meinhard K, Müllner HW, Pichler B, Pichler C, Reihsner R, Stürzenbecher R, Zeiml M. Computational mechanics of materials and structures. Engineering Structures 2009; 31:12881297.
  • 18
    Pavliotis A, Stuart A. Multiscale Methods Averaging and Homogenization. Springer: USA, 2008.
  • 19
    Bathe KJ. Finite element procedures. Prentice-Hall, Pearson Education, Inc, 2006.
  • 20
    Sfantos GK, Aliabadi MH. Multi-scale boundary element modelling of material degradation and fracture. Cumputational Methods of Applied Engineering 2007; 196:13101329.
  • 21
    Zienkiewiecz OC, Taylor RL. Finite Element Method (5th Edition) Volume 2 - Solid Mechanics. Elsevier: Oxford, UK, 2000.
  • 22
    Li S, Liu WK. Meshfree and particle methods and their applications. Applied Mechanics Reviews 2002; 55:134.
  • 23
    Munjiza A, Knight E, Rougier E. Computational Mechanics of Discontinua. Wiley: UK, 2012.
  • 24
    Hoover WG. Smooth Particle Applied Mechanics. The state of art. World Scientific Publishing Co. Pte. Ltd., 2006.
  • 25
    Tersoff J. Empirical interatomic potential for carbon, with application to amorphous carbon. Physical Review Letters 1988; 61:28792882.
  • 26
    Fung YC. Foundations of Solid Mechanics. Prentice-Hall: Oxford UK, 1965.
  • 27
    Reissner E. On one-dimensional finite-strain beam theory the plane problem. Journal of Applied Mathematics and Physics 1972; 23:795804.
  • 28
    Krenk S. Non-linear Modeling and Analysis of Solids and Structures. Cambridge University Press: Cambridge UK, 2009.
  • 29
    Silling SA, Askari E. A meshfree method based on the peridynamic model of solid mechanics. Computers and Structures 2005; 83:15261535.
  • 30
    Fung YC, Tong P. Classical and Computational Solid Mechanics. World Scientific Printers: Singapore, 2010.
  • 31
    Kanninen MF. A dynamic analysis of unstable crack propagation and arrest in the DCB test specimen. International Journal of Fracture. 1974; 10:415430.
  • 32
    Niskanen K. Paper Physics. Fapet Oy: Helsinki, Finland, 1998.
  • 33
    Hägglund S, Isaksson P. Analysis of localized failure in low-basis-weight paper. International Journal of Solids and Structures 2006; 43:55815592.
  • 34
    Qian D, Liu WK, Ruiff RS. Mechanics of nanotube filled with fullerenes. Journal of Physical Chemestry B 2001; 105:1075310758.