SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Belytschko T, Mullen R. Mesh partitions of explicit–implicit time integration. In Formulations and Computational Algorithms in Finite Element Analysis, Mathe K, Oden J, Wunderlich W (eds). MIT press: New York, 1976; 673690.
  • 2
    Belytschko T, Mullen R. Explicit integration of structural problems. Finite Elements in Nonlinear Mechanics 1977; 2:669720.
  • 3
    Neal MO, Belytschko T. Explicit–explicit subcycling with non-integer time step ratios for structural dynamic systems. Computers and Structures 1989; 31(6):87180.
  • 4
    Smolinski P, Sleith S. Explicit multi-time step methods for structural dynamics. In New Methods in Transient Analysis , PVP-Vol. 246/AMD-Vol. 143, 2nd ed. ASME, 1992; 14.
  • 5
    Smolinski P. Subcycling integration with non-integer time steps for structural dynamics problems. Computers & Structures 1996; 59(2):273281.
  • 6
    Tuckerman M, Berne BJ, Martyna GJ. Reversible multiple time scale molecular dynamics. The Journal of Chemical Physics 1992; 97(3):19902001.
  • 7
    Lew A, Ortiz M. Asynchronous variational integrators. In Geometry, Mechanics and Dynamics, Springer: New York, 2002; 91110.
  • 8
    Lew A, Marsden JE, Ortiz M, West M. Asynchronous variational integrators. Archive for Rational Mechanics & Analysis 2003; 167(2):85146.
  • 9
    Lew A, Marsden JE, Ortiz M, West M. Variational time integrators. International Journal for Numerical Methods in Engineering 2004; 60(1):153212.
  • 10
    Kale K, Lew A. Parallel asynchronous variational integrators. International Journal for Numerical Methods in Engineering 2007; 70:291321.
  • 11
    Focardi M, Mariano PM. Convergence of asynchronous variational integrators in linear elastodynamics. International Journal for Numerical Methods in Engineering 2008; 75:755769.
  • 12
    Fong W, Darve E, Lew A. Stability of asynchronous variational integrators. Journal of Computational Physics 2008; 227(18):83678394.
  • 13
    Wendlandt JM, Marsden JE. Mechanical integrators derived from a discrete variational principle. Journal Physica D 1997; 106:223246.
  • 14
    Veselov AP. Integrable discrete-time systems and difference operators. Functional Analysis and its Applications 1988; 22(2):8393.
  • 15
    Baez JC, Gilliam JW. An algebraic approach to discrete mechanics. Letters in Mathematical Physics 1994; 31:205212.
  • 16
    Ortiz M. A note on energy conservation and stability of nonlinear time-stepping algorithms. Computers & Structures 1986; 24(1):167168.
  • 17
    Gates M, Matous K, Heath MT. Asynchronous multi-domain variational integrators for non-linear problems. International Journal for Numerical Methods in Engineering 2008; 76(29-32):13531378.
  • 18
    Benes M, Matous K. Asynchronous multi-domain variational integrators for nonlinear hyperelastic solids. Computer Methods in Applied Mechanics and Engineering 2010; 199(29-32):19922013.
  • 19
    Garcia-archilla B, Sanz-serna JM, Skeel RD. Long-time-step methods for oscillatory differential equations. SIAM Journal of Scientific Computing 1999; 20:930963.
  • 20
    Signorini A. Questioni di elasticità non linearizzata e semilinearizzata (issues in non linear and semilinear elasticity). Rendiconti di Matematica e delle sue applicazioni 1959; 5(18):95139.
  • 21
    Laursen TA, Chawla V. Design of energy conserving algorithms for frictionless dynamic contact problems. International Journal for Numerical Methods in Engineering 1997; 40:863886.
  • 22
    Laursen TA, Love GR. Improved implicit integrators for transient impact problems – geometric admissibility within the conserving framework. International Journal for Numerical Methods in Engineering 2002; 53:245274.
  • 23
    Love GR, Laursen TA. Improved implicit integrators for transient impact problems – dynamic frictional dissipation within an admissible conserving framework. Computer Methods in Applied Mechanics and Engineering 2003; 192:22232248.
  • 24
    Fetecau RC, Marsden JE, Ortiz M, West M. Nonsmooth Lagrangian mechanics and variational collision integrators. SIAM Journal on Applied Dynamical Systems 2003; 2(3):381416.
  • 25
    Cirak F, West M. Decomposition contact response (DCR) for explicit finite element dynamics. International Journal for Numerical Methods in Engineering 2005; 64(8):10781110.
  • 26
    Harmon D, Vouga E, Smith B, Tamstorf R, Grinspun E. Asynchronous contact mechanics. In ACM SIGGRAPH 2009 papers, SIGGRAPH ’09, ACM: New York, NY, USA, 2009; 87:187:12.
  • 27
    Hairer E. Variable time step integration with symplectic methods. Applied Numerical Mathematics: Transactions of IMACS 1997; 25(2–3):219227.
  • 28
    Kane C, Marsden JE, Ortiz M. Symplectic-energy-momentum preserving variational integrators. Journal of Mathematical Physics 1999; 40(7):33533371.
  • 29
    Marsden JE, West M. Discrete mechanics and variational integrators. Acta Numerica 2001; 10:357514.
  • 30
    Wolff S, Bucher C. Asynchronous variational integration using continuous assumed gradient elements. Computer Methods in Applied Mechanics and Engineering 2013; 255:158166.
  • 31
    Andersen H. RATTLE: A “velocity” version of the SHAKE algorithm for molecular dynamics calculations. Journal of Computational Physics 1983; 52(1):2434.
  • 32
    Bradshaw G, O'Sullivan C. Sphere-tree construction using dynamic medial axis approximation. ACM SIGGRAPH Symposium on Computer Animation 2002; 3340.
  • 33
    Hubbard PM. Collision detection for interactive graphics applications. IEEE Transactions on Visualization and Computer Graphics 1995; 1(3):218230.
  • 34
    Gottschalk S, Lin MC, Manocha D. OBBTree: a hierarchical structure for rapid interference detection. Computer Graphics 1996; 30(Annual Conference Series):171180.
  • 35
    van den Bergen G. Efficient collision detection of complex deformable models using aabb trees. Journal of Graphics Tools Archive 1997; 2(4):113.
  • 36
    Klosowski JT, Held M, Mitchell JSB, Sowizral H, Zikan K. Efficient collision detection using bounding volume hierarchies of k-DOPs. IEEE Transactions on Visualization and Computer Graphics 1998; 4(1):2136.
  • 37
    Warren MS, Salmon JK. A parallel hashed oct-tree n-body algorithm. Supercomputing ’93, Los Alamitos, 1993; 1221.
  • 38
    Ganovelli F, Dingliana J, O'Sullivan C. Buckettree: improving collision detection between deformable objects. Spring Conference in Computer Graphics (SCCG), Bratislava, 2000; 156163.
  • 39
    Bentley JL. Multidimensional binary search trees used for associative searching. Communications of the ACM 1975; 18:509517.
  • 40
    Diekmann R, Hungershöfer J, Lux M, Taenzer L, Wierum J-M. Using space filling curves for efficient contact searching. Proceedings of the ECCOMAS, 2000.
  • 41
    Diekmann R, Hungershöfer J, Lux M, Taenzer L, Wierum J-M. Efficient contact search for finite element analysis. In Proceedings of ECCOMAS 2000, Onate E (ed.). CIMNE: Barcelona, 2000.
  • 42
    Oldenburg M, Nilsson L. The position code algorithm for contact searching. International Journal for Numerical Methods in Engineering 1994; 37(3):359386.
  • 43
    Teschner M, Heidelberger B, Mueller M, Pomeranets D, Gross M. Optimized spatial hashing for collision detection of deformable objects, 2003.
  • 44
    Teschner M, Kimmerle S, Heidelberger B, Zachmann G, Raghupathi L, Fuhrmann A, Cani M, Faure F, Magnenat-Thalmann N, Strasser W, Volino P. Collision detection for deformable objects. Computer Graphics Forum 2005; 24(1).
  • 45
    Glocker C. Concepts for modeling impacts without friction. Acta Mechanica 2004; 168(1-2):119.