• finite elements;
  • mortar method;
  • mesh tying;
  • contact;
  • large deformation


A version of the mortar method is developed for tying arbitrary dissimilar 3D meshes with a focus on issues related to large deformation solid mechanics. Issues regarding momentum conservation, large deformations, computational efficiency and bending are considered. In particular, a mortar method formulation that is invariant to rigid body rotations is introduced. A scheme is presented for the numerical integration of the mortar surface projection integrals applicable to arbitrary 3D curved dissimilar interfaces. Here, integration need only be performed at problem initialization such that coefficients can be stored and used throughout a quasi-static time stepping process even for large deformation problems. A degree of freedom reduction scheme exploiting the dual space interpolation method such that direct linear solution techniques can be applied without Lagrange multipliers is proposed. This provided a significant reduction in factorization times. Example problems which touch on the aforementioned solid mechanics related issues are presented. Published in 2003 by John Wiley & Sons, Ltd.