SEARCH

SEARCH BY CITATION

Keywords:

  • error analysis;
  • Fourier-Galerkin spectral method;
  • Oldroyd four constant model;
  • system of quasilinear partial differential

Abstract

A Fourier-Galerkin spectral method is proposed and used to analyze a system of quasilinear partial differential equations governing the drainage of liquids of the Oldroyd four-constant type. It is shown that, Fourier-Galerkin approximations are convergent with spectral accuracy. An efficient and accurate algorithm based on the Fourier-Galerkin approximations to the system of quasilinear partial differential equations are developed and implemented. Numerical results indicating the high accuracy and effectiveness of this algorithm are presented. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 28: 492–505, 2012