An unconditionally stable uncoupled scheme for a triphasic Cahn–Hilliard/Navier–Stokes model



We propose an original scheme for the time discretization of a triphasic Cahn–Hilliard/Navier–Stokes model. This scheme allows an uncoupled resolution of the discrete Cahn–Hilliard and Navier-Stokes system, which is unconditionally stable and preserves, at the discrete level, the main properties of the continuous model. The existence of discrete solutions is proved, and a convergence study is performed in the case where the densities of the three phases are the same. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq. 2013