Biquadratic finite volume element method based on optimal stress points for second order hyperbolic equations



Based on optimal stress points, we develop a full discrete finite volume element scheme for second order hyperbolic equations using the biquadratic elements. The optimal order error estimates in L(H1), L(L2) norms are derived, in addition, the superconvergence of numerical gradients at optimal stress points is also discussed. Numerical results confirm the theoretical order of convergence. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2013