SEARCH

SEARCH BY CITATION

References

  • 1
    D. H. Peregrine, Calculations of the development of an undular bore, J Fluid Mech 25 (1966), 321330.
  • 2
    D. H. Peregrine, Long waves on a beach, J Fluid Mech 27 (1967), 815827.
  • 3
    T. B. Benjamin, J. L. Bona, and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos Trans Royal Soc London Series A 272 (1972), 4778.
  • 4
    M. E. Alexander, J. L. Morris, Galerkin method applied to some model equations for nonlinear dispersive waves, J Comput Phys 30 (1979), 428451.
  • 5
    İ. Dağ, B. Saka, and D. Irk, Galerkin method for the numerical solution of the RLW equation using quintic B-splines, J Comp Appl Math 190 (2006), 532547.
  • 6
    T. Achouri, M. Ayadi, and K. Omrani, A fully Galerkin method for the damped generalized regularized long-wave (DGRLW) equation, Numer Methods Partial Differ Eq 25 (2009), 668684.
  • 7
    S. Xie, S. Kim, G. Woo, and S. Yi, A numerical method for the generalized regularized long wave equation using a reproducing kernel function, SIAM J Sci Comput 30 (2008), 22632285.
  • 8
    L. R. T. Gardner, G. A. Gardner, A. Dogan, A least squares finite element scheme for the RLW equation, Comm Numer Meth Eng 12 (1996), 795804.
  • 9
    H. Gu and N. Chen, Least-squares mixed finite element methods for the RLW equations, Numer Meth Partial Differ Eq 24 (2008), 749758.
  • 10
    A. A. Soliman and K. R. Raslan, Collocation method using quadratic B-spline for the RLW equation, Int J Comput Math 78 (2001), 399412.
  • 11
    B. Saka and İ. Dağ, Quartic B-spline collocation algorithms for numerical solution of the RLW equation, Numer Meth Partial Differ Eq 23 (2007), 731751.
  • 12
    S. M. Hassan and D. G. Alamery, B-splines collocation algorithms for solving numerically the MRLW equation, Int J Nonl Sci 8 (2009), 131140.
  • 13
    B. Saka, A. Şahin, and İ. Dağ, B-spline collocation algorithms for numerical solution of the RLW equation, Numer Meth Partial Differ Eq 27 (2011), 581607.
  • 14
    D. Kaya and S. M. El-Sayed, An application of the decomposition method for the generalized KDV and RLW equations, Chaos Solitons Fractals 17 (2003), 869877.
  • 15
    D. Kaya, A numerical simulation of solitary-wave solutions of the generalized regularized long-wave equation, Appl Math Comput 149 (2004), 833841.
  • 16
    E. Yusufoglu and A. Bekir, Application of the variational iteration method to the regularized long wave equation, Comput Math Appl 54 (2007), 11541161.
  • 17
    J. C. Eilbeck and G. R. McGuire, Numerical study of the regularized long-wave equation. I: Numerical methods, J Comput Phys 19 (1975), 4357.
  • 18
    J. C. Eilbeck and G. R. McGuire, Numerical study of the regularized long-wave equation. II: Interaction of solitary waves, J Comput Phys 23 (1977), 6373.
  • 19
    Q. Chang, G. Wang, and B. Guo, Conservative scheme for a model of nonlinear dispersive waves and its solitary waves induced by boundary motion, J Comput Phys 93 (1991), 360375.
  • 20
    B. Y. Guo, Generalized stability of difference method for nonlinear initial value problems and its application, E. A. Lipitakis, editor, Advances on computer mathematics and its applications, World Scientific, Singapore, 1993, pp. 167176.
  • 21
    L. Zhang, A finite difference scheme for generalized long wave equation, Appl Math Comput 168 (2005), 962972.
  • 22
    T. Wang and L. Zhang, New conservative schemes for regularized long wave equation, Numer Math 15 (2006), 348356.
  • 23
    S. Kutluay, and A. Esen, A finite difference solution of the regularized long-wave equation, Math Probl Eng 2 (2006). Art. ID 85743, 14 pp.
  • 24
    A. K. Khalifa, K. R. Raslan, and H. M. Alzubaidi, A finite difference scheme for the MRLW and solitary wave interactions, Appl Math Comput 189 (2007), 346354.
  • 25
    J. Cai, A new explicit multisymplectic scheme for the regularized long-wave equation, J Math Phys 50 (2009), 013535, 16 pp.
  • 26
    G. Berikelashvili and M. Mirianashvili, A one-parameter family of difference schemes for the regularized long-wave equation, Georgian Math J 18 (2011), 639667.
  • 27
    R. D. Lazarov, On the convergence of finite difference schemes on generalized solutions of Poisson equation, Differ Uravn 17 (1981), 12851294, (in Russian).
  • 28
    R. D. Lazarov and V. L. Makarov, Convergence of the difference methods and the methods of lines for multidimensional problems in classes of generalized solutions, Soviet Math Dokl 23 (1981), 6073, (in Russian).
  • 29
    R. D. Lazarov, V. L. Makarov, and A. A. Samarskii, Application of exact difference schemes for constructing and investigating difference schemes on generalized solutions, Mat Sb 117 (1982), 469480, (in Russian).
  • 30
    I. P. Gavrilyuk, R. D. Lazarov, V. L. Makarov, and S. I. Pirnazarov, Estimates of the rate of convergence of difference schemes for fourth-order elliptic equations, USSR Comput Math Math Phys 23 (1983), 6470, (in Russian).
  • 31
    E. Süli, B. S. Jovanović, and L. D. Ivanović, Finite difference approximations of generalized solutions, Math Comp 45 (1985), 319327.
  • 32
    A. A. Samarskii, R. D. Lazarov, and V. L. Makarov, Difference schemes for differential equations with generalized solutions, Visshaja Shkola, Moscow, 1987, (in Russian).
  • 33
    B. Jovanović, The finite difference method for boundary-value problems with weak solutions. Posebna Izdanja, 16, Matematički Institut, Beograd, 1993.
  • 34
    G. Berikelashvili, Construction and analysis of difference schemes for some elliptic problems, and consistent estimates of the rate of convergence, Mem Differ Eq Math Phys 38 (2006), 1131.
  • 35
    D. D. Haroske, H. Triebel, Distributions, Sobolev spaces, elliptic equations, EMS Textbooks in Mathematics, European Mathematical Society, Zrich, 2008.
  • 36
    A. A. Samarskii, The theory of difference schemes, Monographs and Textbooks in Pure and Applied Mathematics: 240 (2001).
  • 37
    T. Dupont and R. Scott, Polynomial approximation of functions in Sobolev spaces, Math Comp 34 (1987), 441463.
  • 38
    J. H. Bramble and S. R. Hilbert, Bounds for a class of linear functionals with application to Hermite interpolation, Numer Math 16 (1971), 362369.
  • 39
    J. Peetre, On the differentiability of the solutions of quasilinear partial differential equations, Trans Amer Math Soc 104 (1962), 476482.
  • 40
    J. L. Bona, W. R. McKinney, and J. M. Restrepo, Stable and unstable solitary-wave solutions of the generalized regularized long-wave equation, J Nonlinear Sci 10 (2000), 603638.