SEARCH

SEARCH BY CITATION

References

  • 1
    J. Zhu and Q. C. Zeng , A mathematical formulation for optimal control of air pollution, Sci China D 46 (2003), 9941002.
  • 2
    A. Martínez , C. Rodríguez , and M. E. Vázquez-Méndez , Theoretical and numerical analysis of an optimal control problem related to wastewater treatment, SIAM J Control Optim 38 (2000), 1534553.
  • 3
    R. Becker and B. Vexler , Optimal control of the convection-diffusion equation using stabilized finite element methods, Numer Math 106 (2007), 349367.
  • 4
    M. Heinkenschloss and D. Leykekhman , Local error estimates for SUPG solutions of advection-dominated elliptic linear-quadratic optimal control problems, SIAM J Numer Anal 47 (2010), 46074638.
  • 5
    M. Hinze , N. N. Yan , and Z. J. Zhou , Variational discretization for optimal control governed by convection dominated diffusion equations, J Comput Math 27 (2009), 237253.
  • 6
    S. Scott Collis and M. Heinkenschloss , Analysis of the streamline upwind/Petrov Galerkin Method applied to the solution of optimal control problems, Tech Rep TR0201, Rice University, Houston, TX, 2002.
  • 7
    N. N. Yan and Z. J. Zhou , A priori and a posteriori error estimates of streamline diffusion finite element method for optimal control problem governed by convection dominated diffusion equation, Numer Math Theory Methods Appl 1 (2008), 297320.
  • 8
    N. N. Yan and Z. J. Zhou , A priori and a posteriori error analysis of edge stabilization Galerkin method for the optimal control problem governed by convection dominated diffusion equation, J Comput Appl Math 223 (2009), 198217.
  • 9
    D. Leykekhman and M. Heinkenschloss , Local error analysis of discontinuous Galerkin methods for advection-dominated elliptic linear-quadratic optimal control problems, SIAM J Numer Anal 50 (2012), 20122038.
  • 10
    T. J. Sun , Discontinuous Galerkin finite element method with interior penalties for convection diffusion optimal control problem, Int J Numer Anal Model 7 (2010), 87107.
  • 11
    C. G. Xiong and Y. Li , Error analysis for optimal control problem governed by convection diffusion equations: DG method, J Comput Appl Math 235 (2011), 31633177.
  • 12
    N. N. Yan and Z. J. Zhou , A RT mixed FEM/DG scheme for optimal control governed by convection diffusion equations, J Sci Comput 41 (2009), 273299.
  • 13
    Z. J. Zhou and N. N. Yan , The local discontinuous Galerkin method for optimal control problem governed by convection diffusion equations, Int J Numer Anal Model 7 (2010), 681699.
  • 14
    H. Roos and C. Reibiger , Numerical analysis of a system of singularly perturbed convection-diffusion equations related to optimal control, Numer Math Theory Methods Appl 4 (2011), 562575.
  • 15
    B. Cockburn and C. W. Shu , The Local Discontinuous Galerkin method for time-dependent convection diffusion systems, SIAM J Numer Anal 35 (1998), 22402463.
  • 16
    P. Castillo, B. Cockburn, I. Perugia and D. Schötzau, An a priori error analysis of the local discontinuous Galerkin method for elliptic problems, SIAM J Numer Anal 38 (2000),16761706.
  • 17
    D. Leykekhman , Investigation of commutative properties of discontinuous Galerkin methods in PDE constrained optimal control problems, J Sci Comput 53 (2012), 483511.
  • 18
    L. Dede and A. Quarteroni , Optimal control and numerical adaptivity for advection diffusion-equations, M2AN Math Model Numer Anal 39 (2005), 10191040.
  • 19
    H. Yucel , M. Heinkenschloss , and B. Karasozen , An adaptive discontinuous Galerkin method for convection dominated distributed optimal control problems, to appear.
  • 20
    H. F. Fu and H. X. Rui , Adaptive characteristic finite element approximation of convection-diffusion optimal control problems, Numer Methods Partial Differ Equ 29 (2013), 979998.
  • 21
    J. L. Lions , Optimal control of systems governed by partial differential equations, Springer-Verlag, Berlin, 1971.
  • 22
    M. Hinze , A variational discretization concept in control constrained optimization: the linear-quadratic case, J Comput Optim Appl 30 (2005), 4563.
  • 23
    H. G. Roos , M. Stynes , and L. Tobiska , Robust numerical methods for singularly perturbed differential equations, Computational Mathematics, Vol. 24, Springer-Verlag, Berlin, 2008.
  • 24
    M. Stynes , Steady-state convection-diffusion problems, Acta Numerica ( 2005), 445508.
  • 25
    I. Babuška and M. Suri , The optimal convergence rate of the p-version of the finite element method, SIAM J Numer Anal 24 (1987), 750776.
  • 26
    A. Caboussat and R. Glowinski , A numerical method for a non-smooth advection-diffusion problem arising in sand mechanics, Commun Pure Appl Anal 8 (2009), 161178.
  • 27
    M. Hintermüller , M. Hinze , and R. H. W. Hoppe , Weak-duality based adaptive finite element methods for PDE-constrained optimization with pointwise Gradient state-constraints, J Comput Math 30 (2012), 101123.
  • 28
    L. Chen , iFEM: an innovative finite element methods package in MATLAB, Tech Rep, Department of Mathematics, University of California, Irvine, Irvine, CA 926973875, 2008.