• 1
    I. Herrera and G. F. Pinder, Mathematical modelling in science and engineering: an axiomatic approach, Wiley, Hpboken, N.J., 2012, p. 243.
  • 2
    President's Information Technology Advisory Committee: PITAC, Computational Science: Ensuring America's Competitiveness, Report to the President, June 2005, P. 104. Available at: www.nitrd.gow/pitac.
  • 3
    DDM Organization, Proceedings of 21 International Conferences on Domain Decomposition Methods, Available at:, accessed on 2012.
  • 4
    I. Herrera and A. Rosas-Medina The derived-vector space framework and four general purposes massively parallel DDM algorithms, Eng Anal Bound Elem 37 (2013), 646657.
  • 5
    I. Herrera, A. Carrillo-Ledesma and A. Rosas-Medina A brief overview of non-overlapping domain decomposition methods, Geofis Int 50 (2011), 445463.
  • 6
    C. R. Dohrmann, A preconditioner for substructuring based on constrained energy minimization, SIAM J Sci Comput 25 (2003), 246258.
  • 7
    J. Mandel and C. R. Dohrmann, Convergence of a balancing domain decomposition by constraints and energy minimization, Numer Linear Algebra Appl 10 (2003), 639659.
  • 8
    J. Mandel, C. R. Dohrmann, and R. Tezaur, An algebraic theory for primal and dual substructuring methods by constraints, Appl Numer Math 54 (2005), 167193.
  • 9
    C. Farhat, and F. Roux, A method of finite element tearing and interconnecting and its parallel solution algorithm, Int J Numer Methods Eng 32 (1991), 12051227.
  • 10
    J. Mandel and R. Tezaur, Convergence of a substructuring method with Lagrange multipliers, Numer Math 73 (1996), 473487.
  • 11
    C. Farhat, M. Lessoinne, P. LeTallec, K. Pierson, and D. Rixen, FETI-DP a dual-primal unified FETI method, Part I: a faster alternative to the two-level FETI method. Int J Numer Methods Eng 50 (2001), 15231544.
  • 12
    C. Farhat, M. Lessoinne, and K. Pierson, A scalable dual-primal domain decomposition method, Numer Linear Algebra Appl 7 (2000), 687714.
  • 13
    A. Carrillo-Ledesma, I. Herrera, and L. M. de la Cruz, Parallel algorithms for computational models of geophysical systems, Geofís Int, to appear.
  • 14
    I. Herrera, and R. A. Yates, The multipliers-free dual primal domain decomposition methods for nonsymmetric matrices, Numer Meth Partial Differential Equation 27 (2011), 12621289, 2011. (Published on line April 28, 2010) DOI 10.1002/Num. 20581.
  • 15
    A. Toselli and O. Widlund, Domain decomposition methods: algorithms and theory, Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 2005, p. 450.
  • 16
    Y. Saad, Iterative methods for sparse linear systems, SIAM, Philadelphia, 2003, p. 447.