• Azuero, A., Pisu, M., McNees, P., Burkhardt, J., Benz, R., & Meneses, K. (2010). An application of longitudinal analysis with skewed outcomes. Nursing Research, 59, 301307.
  • Brown, H., & Prescott, R. (2006). Applied mixed models in medicine. Chicester, UK: John Wiley & Sons.
  • Burman, P. (1989). A comparative study of ordinary cross-validation, υ-fold cross-validation and the repeated learning-testing methods. Biometrika, 76, 503514.
  • Chang, A.-L., & Kelly, P. J. (2011). Application of a hierarchical model incorporating intrafamily correlation and cluster effects. Nursing Research, 60, 208212.
  • Cheng, J., Edwards, L. J., Maldonado-Molina, M. M., Komro, K. A., & Muller, K. E. (2010). Real longitudinal data analysis for real people: Building a good enough mixed model. Statistics in Medicine, 29, 504520. DOI: 10.1002/sim.3775.
  • Fitzmaurice, G. M., Laird, N. M., & Ware, J. H. (2004). Applied longitudinal analysis. Hoboken, NJ: John Wiley & Sons.
  • Jones, R. H. (2011). Bayesian information criterion for longitudinal and clustered data. Statistics in Medicine, 30, 30503056.
  • Knafl, G. J., Delucchi, K. L., Bova, C. A., Fennie, K. P., Ding, K., & Williams, A. B. (2010). A systematic approach for analyzing electronically monitored adherence data. In B. Ekwall & M. Cronquist (Eds.), Micro electro mechanical systems (MEMS) technology, fabrication processes and applications (pp 166). Hauppauge, NY: Nova Science Publishers. Available at
  • Knafl, G. J., Fennie, K. P., Bova, C., Dieckhaus, K., & Williams, A. B. (2004). Electronic monitoring device event modeling on an individual-subject basis using adaptive Poisson regression. Statistics in Medicine, 23, 783801.
  • Knafl, G. J., & Grey, M. (2007). Factor analysis model evaluation through likelihood cross-validation. Statistical Methods in Medical Research, 16, 77102.
  • Knafl, G. J., Knafl, K. A., & McCorkle, R. (2005). Mixed models incorporating intra-familial correlation through spatial autoregressive methods. Research in Nursing & Health, 28, 348356.
  • Knol, M. J., Janssen, K. J., Donders, A. R., Egberts, A. C., Heerdink, E. R., Grobbee, D. E., … Geerlings, M. I. (2010). Unpredictable bias when using the missing indicator method or complete case analysis for missing confounder values: An empirical example. Journal of Clinical Epidemiology, 63, 728736.
  • Koehler, A. B., & Murphree, E. S. (1988). A comparison of the Akaike and Schwarz criteria for selecting model order. Journal of the Royal Statistical Society, Series B, 37, 187195.
  • Laird, N. M., & Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics, 38, 963974.
  • Park, T., Park, J.-K., & Davis, C. S. (2001). Effects of covariance model assumptions on hypothesis tests for repeated measurements: Analysis of ovarian hormone data and pituitary-pteromaxillary distance data. Statistics in Medicine, 20, 24412454. DOI: 10.1002/sim.859.
  • SAS Institute, Inc. (2004). SAS/STAT 9.1 user's guide. Cary, NC: SAS Institute, Inc.
  • Sclove, S. L. (1987). Application of model-selection criteria to some problems in multivariate analysis. Psychometrika, 52, 333343.
  • Shi, P., & Tsai, C.-L. (1998). A note on the unification of the Akaike information criterion. Journal of the Royal Statistical Society, Series B, 60, 551558.
  • Stone, M. (1977). An asymptotic equivalence of choice of model by cross-validation and Akaike's criterion. Journal of the Royal Statistical Society, Series B, 39, 4447.
  • Stone, M. (1979). Comments on model selection criteria of Akaike and Schwarz. Journal of the Royal Statistical Society, Series B, 41, 276278.
  • van der Lende, R., Kok, T. J., Peset, R., Quanjer, P. H., Schouten, J. P., & Orie, N. G. M. (1981). Decreases in VC and FEV1 with time: Indicators for effects of smoking and air pollution. Bulletin of European Physiopathology and Respiration, 17, 775792.
  • Verbeke, G., & Molenberghs, G. (2000). Linear mixed models for longitudinal data. New York, NY: Springer.