SEARCH

SEARCH BY CITATION

References

  •  1
    Wieckowska A, Feldstein AE. Nonalcoholic fatty liver disease in the pediatric population: a review. Curr Opin Pediatr 2005; 17: 636-641.
  • 2
    Angulo P. Nonalcoholic fatty liver disease. N Engl J Med 2002; 346: 1221-1231.
  • 3
    Teli MR, James OF, Burt AD, Bennett MK, Day CP. The natural history of nonalcoholic fatty liver: a follow-up study. Hepatology 1995; 22: 1714-1719.
  • 4
    Fassio E, Alvarez E, Domínguez N, Landeira G, Longo C. Natural history of nonalcoholic steatohepatitis: a longitudinal study of repeat liver biopsies. Hepatology 2004; 40: 820-826.
  • 5
    Dam-Larsen S, Franzmann M, Andersen IB, et al. Long term prognosis of fatty liver: risk of chronic liver disease and death. Gut 2004; 53: 750-755.
  • 6
    Brunt EM, Janney CG, Di Bisceglie AM, Neuschwander-Tetri BA, Bacon BR. Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am J Gastroenterol 1999; 94: 2467-2474.
    Direct Link:
  • 7
    Kleiner DE, Brunt EM, Van Natta M, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 2005; 41: 1313-1321.
  • 8
    Matteoni CA, Younossi ZM, Gramlich T, Boparai N, Liu YC, McCullough AJ. Nonalcoholic fatty liver disease: a spectrum of clinical and pathological severity. Gastroenterology 1999; 116: 1413-1419.
  • 9
    Angulo P, Keach JC, Batts KP, Lindor KD. Independent predictors of liver fibrosis in patients with nonalcoholic steatohepatitis. Hepatology 1999; 30: 1356-1362.
  • 10
    Andersen T, Christoffersen P, Gluud C. The liver in consecutive patients with morbid obesity: a clinical, morphological, and biochemical study. Int J Obes 1984; 8: 107-115.
  • 11
    Zambon S, Romanato G, Sartore G, et al. Bariatric surgery improves atherogenic LDL profile by triglyceride reduction. Obes Surg 2009; 19: 190-195.
  • 12
    Chen BY, Tie R, Qu P, et al. Vasonatrin peptide, a new regulator of adiponectin and interleukin-6 production in adipocytes. J Endocrinol Invest 2011; 34: 742-746.
  • 13
    Fain JN, Tichansky DS, Madan AK. Most of the interleukin 1 receptor antagonist, cathepsin S, macrophage migration inhibitory factor, nerve growth factor, and interleukin 18 release by explants of human adipose tissue is by the non-fat cells, not by the adipocytes. Metabolism 2006; 55: 1113-1121.
  • 14
    Bertolani C, Marra F. The role of adipokines in liver fibrosis. Pathophysiology 2008; 15: 91-101.
  • 15
    Russwurm M, Koesling D. Isoforms of NO-sensitive guanylyl cyclase. Mol Cell Biochem 2002; 230: 159-164.
  • 16
    Tremblay J, Desjardins R, Hum D, Gutkowska J, Hamet P. Biochemistry and physiology of the natriuretic peptide receptor guanylyl cyclases. Mol Cell Biochem 2002; 230: 31-47.
  • 17
    Siqueira C, de Moura MC, Pedro AJ, Rocha P. Elevated nitric oxide and 3′,5′-cyclic guanosine monophosphate levels in patients with alcoholic cirrhosis. World J Gastroenterol 2008; 14: 236-242
  • 18
    Montoliu C, Piedrafita B, Serra MA, del Olmo JA, Rodrigo JM, Felipo V. Activation of soluble guanylate cyclase by nitric oxide in lymphocytes correlates with minimal hepatic encephalopathy in cirrhotic patients. J Mol Med 2007; 85: 233-241.
  • 19
    Warner L, Skorecki K, Blendis LM, Epstein M. Atrial Natriuretic factor and liver disease. Hepatology 1993; 17: 500-513.
  • 20
    Laffi G, Foschi M, Masini E, et al. Increased production of nitric oxide by neutrophils and monocytes from cirrhotic patients with ascites and hyperdynamic circulation. Hepatology 1995; 22: 1666-1673.
  • 21
    Montoliu C, Kosenko E, del Olmo JA, Serra MA, Rodrigo JM, Felipo V. Correlation of nitric oxide and atrial natriuretic peptide changes to altered cGMP homeostasis in liver cirrhosis. Liver Int 2005; 25: 787-779.
  • 22
    World Medical Organization. Declaration of Helsinki. BMJ 1996; 313: 1448-1449.
  • 23
    Kimura M. Metallothioneins of monocytes and lymphocytes. Methods Enzymol 1989; 205: 291-302.
  • 24
    Montoliu C, Piedrafita B, Serra MA, et al. IL-6 and IL-18 in serum may discriminate cirrhotic patients with and without minimal hepatic encephalopathy. J Clin Gastroenterol 2009; 43: 272-279.
  • 25
    Kopp HP, Kopp CW, Festa A, et al. Impact of weight loss on inflammatory proteins and their association with the insulin resistance syndrome in morbidly obese patients. Arterioscler Thromb Vasc Biol 2003; 23: 1042-1047.
  • 26
    Sager G. Cyclic GMP transporters. Neurochem Int 2004; 45: 865-873.
  • 27
    Montoliu C, Llansola M, Kosenko E, Corbalán R, Felipo V. Role of cyclic GMP in glutamate neurotoxicity in primary cultures of cerebellar neurons. Neuropharmacology 1999; 38: 1883-1891.
  • 28
    Jin XH, Siragy HM, Carey RM. Renal interstitial cGMP mediates natriuresis by direct tubule mechanism. Hypertension 2001; 38: 309-316.
  • 29
    Sasaki S, Siragy HM, Gildea JJ, Felder RA, Carey RM. Production and role of extracellular guanosine cyclic 3',5' monophosphate in sodium uptake in human proximal tubule cells Hypertension 2004; 43: 286-291.
  • 30
    Erceg S, Monfort P, Hernández-Viadel M, Llansola M, Montoliu C, Felipo V. Restoration of learning ability in hyperammonemic rats by increasing extracellular cGMP in brain. Brain Res 2005; 1036: 115-121.
  • 31
    Montoliu C, Kosenko E, Calvete JJ, et al. Increased protein kinase A regulatory subunit and cGMP binding in erythrocyte membranes in liver cirrhosis. J Hepatol 2004; 40: 766-773.
  • 32
    Montoliu C, Kosenko E, Del Olmo JA, Serra MA, Rodrigo JM, Felipo V. Correlation of nitric oxide and atrial natriuretic peptide changes with altered cGMP homeostasis in liver cirrhosis. Liver Int 2005; 25: 787-795.
  • 33
    Weil J, Strom TM, Brangenberg R, et al. Plasma atrial natriuretic peptide levels in children with cardiac diseases: correlation with cGMP levels and haemodynamic parameters. Horm Res 1987; 28: 64-70.
  • 34
    Tsutamoto T, Kinoshita M, Ohbayashi Y, Wada A, Maeda Y, Adachi T. Plasma arteriovenous cGMP difference as a useful indicator of nitrate tolerance in patients with heart failure. Circulation 1994; 90: 823-829.
  • 35
    Grunewald C, Nisell H, Carlström K, Kublickas M, Randmaa I, Nylund L. Acute volume expansion in normal pregnancy and preeclampsia. Effects on plasma atrial natriuretic peptide (ANP) and cyclic guanosine monophosphate (cGMP) concentrations and feto-maternal circulation. Acta Obstet Gynecol Scand 1994; 73: 294-299.
  • 36
    Rössler A, Noskov V, László Z, Polyakow VV, Hinghofer-Szalkay HG. Permanent depression of plasma cGMP during long-term space flight. Physiol Res 2001; 50: 83-90.
  • 37
    Zhdanova IV, Raz DJ. Effects of melatonin ingestion on cAMP and cGMP levels in human plasma. J Endocrinol 1999; 163: 457-462.
  • 38
    Koo YK, Kim JM, Kim SY, et al. Elevated plasma concentration of NO and cGMP may be responsible for the decreased platelet aggregation and platelet leukocyte conjugation in platelets hypo-responsive to catecholamines. Platelets 2009; 20: 555-565.
  • 39
    Lauster F, Heim JM, Drummer C, Fülle HJ, Gerzer R, Schiffl H. Plasma cGMP level as a marker of the hydration state in renal replacement therapy. Kidney Int Suppl 1993; 41: S57-S59.