• 1
    Fonken LK, Nelson RJ. Illuminating the deleterious effects of light at night. F1000 Med Rep 2011;3:18.
  • 2
    Reiter RJ, Tan DX, Korkmaz A, et al. Obesity and metabolic syndrome: association with chronodisruption, sleep deprivation, and melatonin suppression. Ann Med 2011;44:564-577.
  • 3
    Wyse CA, Selman C, Page MM, et al. Circadian desynchrony and metabolic dysfunction: did light pollution make us fat? Med Hypotheses 2011;776:1139-1144.
  • 4
    Maury E, Ramsey KM, Bass J. Circadian rhythms and metabolic syndrome: from experimental genetics to human disease. Circ Res 2010;1063:447-462.
  • 5
    Knutsson A. Health disorders of shift workers. Occup Med (Lond) 2003;532:103-108.
  • 6
    Ha M, Park J. Shiftwork and metabolic risk factors of cardiovascular disease. J Occup Health 2005;472:89-95.
  • 7
    Parkes KR. Shift work and age as interactive predictors of body mass index among offshore workers. Scand J Work Environ Health 2002;281:64-71.
  • 8
    Scheer FA, Hilton MF, Mantzoros CS, et al. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci USA 2009;10611:4453-4458.
  • 9
    Fonken LK, Workman JL, Walton JC, et al. Light at night increases body mass by shifting the time of food intake. Proc Natl Acad Sci USA 2010;10743:18664-18669.
  • 10
    Vinogradova IA, Anisimov VN, Bukalev AV, et al. Circadian disruption induced by light-at-night accelerates aging and promotes tumorigenesis in rats. Aging Us 2009;110:855-865.
  • 11
    Wideman CH, Murphy HM. Constant light induces alterations in melatonin levels, food intake, feed efficiency, visceral adiposity, and circadian rhythms in rats. Nutr Neurosci 2009;125:233-240.
  • 12
    Turek FW, Joshu C, Kohsaka A, et al. Obesity and metabolic syndrome in circadian Clock mutant mice. Science 2005;3085724:1043-1045.
  • 13
    Marcheva B, Ramsey KM, Buhr ED, et al. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 2010;4667306:627-631.
  • 14
    Kohsaka A, Laposky AD, Ramsey KM, et al. High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab 2007;65:414-421.
  • 15
    Eckel-Mahan K, Sassone-Corsi P. Metabolism control by the circadian clock and vice versa. Nat Struct Mol Biol 2009;165:462-467.
  • 16
    Vinogradova IA. Effect of different light regimens on the development of metabolic syndrome of aging rats. Adv Gerontol 2007;202:70-75.
  • 17
    McNamara P, Seo SB, Rudic RD, et al. Regulation of CLOCK and MOP4 by nuclear hormone receptors in the vasculature: a humoral mechanism to reset a peripheral clock. Cell 2001;1057:877-889.
  • 18
    Guo H, Brewer JM, Champhekar A, et al. Differential control of peripheral circadian rhythms by suprachiasmatic-dependent neural signals. Proc Natl Acad Sci USA 2005;1028:3111-3116.
  • 19
    Vollmers C, Gill S, DiTacchio L, et al. Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression. Proc Natl Acad Sci USA 2009;10650:21453-21458.
  • 20
    Lamia KA, Storch KF, Weitz CJ. Physiological significance of a peripheral tissue circadian clock. Proc Natl Acad Sci USA 2008;10539:15172-15177.
  • 21
    Kennaway DJ, Owens JA, Voultsios A, et al. Metabolic homeostasis in mice with disrupted Clock gene expression in peripheral tissues. Am J Physiol Regul Integr Comp Physiol 2007;2934:R1528-R1537.
  • 22
    Schmutz I, Albrecht U, Ripperger JA. The role of clock genes and rhythmicity in the liver. Mol Cell Endocrinol 2012;3491:38-44.
  • 23
    Arble DM, Bass J, Laposky AD, et al. Circadian timing of food intake contributes to weight gain. Obesity (Silver Spring) 2009;1711:2100-2102.
  • 24
    Damiola F, Le Minh N, Preitner N, et al. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 2000;1423:2950-2961.
  • 25
    Puttonen S, Viitasalo K, Harma M. Effect of shiftwork on systemic markers of inflammation. Chronobiol Int 2011;286:528-535.
  • 26
    Reed AS, Unger EK, Olofsson LE, et al. Functional role of suppressor of cytokine signaling 3 upregulation in hypothalamic leptin resistance and long-term energy homeostasis. Diabetes 2010;594:894-906.
  • 27
    Rogers P, Webb GP. Estimation of body-fat in normal and obese mice. Br J Nutr 1980;431:83-93.
  • 28
    Poudyal H, Panchal SK, Ward LC, et al. Chronic high-carbohydrate, high-fat feeding in rats induces reversible metabolic, cardiovascular, and liver changes. Am J Physiol Endocrinol Metab 2012;30212:E1472-E1482.
  • 29
    Hatori M, Vollmers C, Zarrinpar A, et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab 2012;156:848-860.
  • 30
    Sherman H, Genzer Y, Cohen R, et al. Timed high-fat diet resets circadian metabolism and prevents obesity. FASEB J 2012;26:3493--3502.
  • 31
    Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 2006;4447121:840-846.
  • 32
    Marceau P, Biron S, Hould FS, et al. Liver pathology and the metabolic syndrome X in severe obesity. J Clin Endocrinol Metab 1999;845:1513-1517.
  • 33
    Plomgaard P, Bouzakri K, Krogh-Madsen R, et al. Tumor necrosis factor-alpha induces skeletal muscle insulin resistance in healthy human subjects via inhibition of Akt substrate 160 phosphorylation. Diabetes 2005;5410:2939-2945.
  • 34
    Hotamisligil GS. Inflammation and metabolic disorders. Nature 2006;4447121:860-867.
  • 35
    Dallmann R, Viola AU, Tarokh L, et al. The human circadian metabolome. Proc Natl Acad Sci USA 2012;1097:2625-2629.
  • 36
    Salgado-Delgado R, Angeles-Castellanos M, Saderi N, et al. Food intake during the normal activity phase prevents obesity and circadian desynchrony in a rat model of night work. Endocrinology 2010;1513:1019-1029.