SEARCH

SEARCH BY CITATION

References

  • 1
    Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature 2006;444:1022-1022.
  • 2
    Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006;444:1027-1027.
  • 3
    Flint HJ. Obesity and the gut microbiota. J Clin Gastroenterol 2011;45(Suppl):S128-S132.
  • 4
    Zhang H, DiBaise JK, Zuccolo A, et al. Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci USA 2009;106:2365-2365.
  • 5
    Schwiertz A, Taras D, Schäfer K, et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity 2010;18:190-190.
  • 6
    Solís G, de Los Reyes-Gavilan CG, Fernández N, Margolles A, Gueimonde M. Establishment and development of lactic acid bacteria and bifidobacteria microbiota in breast-milk and the infant gut. Anaerobe 2010;16:307-307.
  • 7
    Fallani M, Young D, Scott J, et al. Intestinal microbiota of 6-week-old infants across Europe: geographic influence beyond delivery mode, breast-feeding, and antibiotics. J Pediatr Gastroenterol Nutr 2010;51:77-77.
  • 8
    Diaz RL, Hoang L, Wang J, et al. Maternal adaptive immunity influences the intestinal microflora of suckling mice. J Nutr 2004;134:2359-2359.
  • 9
    Fåk F, Ahrné S, Linderoth A, Molin G, Jeppsson B, Weström B. Age-related effects of the probiotic bacterium Lactobacillus plantarum 299v on gastrointestinal function in suckling rats. Dig Dis Sci 2008;53:664-664.
  • 10
    Mozeš Š, Bujnáková D, Šefcíková Z, Kmet V. Developmental changes of gut microflora and enzyme activity in rat pups exposed to fat-rich diet. Obesity 2008;16:2610-2610.
  • 11
    Yazawa K, Suegara N, Kawai Y. Intestinal microflora and aging: age-related change of enzymes in the liver and the small intestine of germ-free and conventional rats. Mech Ageing Dev 1981;17:173-173.
  • 12
    Whitt DD, Savage DC. Influence of indigenous microbiota on amount of protein and activities of AP and disaccharidases in extracts of intestinal mucosa in mice. Appl Environ Microbiol 1981;42:513-513.
  • 13
    Šefcíková Z, Bujnáková D, Racek L, Kmet V, Mozeš Š. Developmental changes in gut microbiota and enzyme activity predict obesity risk in rats arising from reduced nests. Physiol Res 2011;60:337-337.
  • 14
    Schumann A, Nutten S, Donnicola D, et al. Neonatal antibiotic treatment alters gastrointestinal tract developmental gene expression and intestinal barrier transcriptome. Physiol Genomics 2005;23:235-235.
  • 15
    Membrez M, Blancher F, Jaquet M, et al. Gut microbiota modulation with norfloxacin and ampicillin enhances glucose tolerance in mice. FASEB J 2008;22:2416-2416.
  • 16
    Fåk F, Ahrné S, Molin G, Jeppsson B, Weström B. Microbial manipulation of the rat dam changes bacterial colonization and alters properties of the gut in her offspring. Am J Physiol Gastrointest Liver Physiol 2008;294:G148-G154.
  • 17
    Cani PD, Bibiloni R, Knauf C, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 2008;57:1470-1470.
  • 18
    Harmsen HJM, Elfferich P, Schut F, Welling GW. A 16S rRNA-targeted probe for detection of lactobacilli and enterococci in faecal samples by fluorescent in situ hybridization. Microb Ecol Health Dis 1999;11:3-3.
  • 19
    Manz W, Amann R, Ludwig W, Vancanneyt M, Schleifer KH. Application of a suite of 16S rRNA–specific oligonucleotide probes designed to investigate bacteria of the phylum cytophaga–flavobacter–bacteroides in the natural environment. Microbiology 1996;142:1097-1097.
  • 20
    Lojda Z, Gossrau R, Schibler TH. Enzyme Histochemistry.Berlin:Springer;1979:59-70.
  • 21
    Mozeš Š, Lenhardt L, Martinková A. A quantitative histochemical study of alkaline phosphatase activity in isolated rat duodenal epithelial cells. Histochem J 1998;30:583-583.
  • 22
    Nachlas MM, Monis B, Rosenblatt D, Seligman AM. Improvement in the histochemical localization of leucine aminopeptidase with a new substrate, L-leucyl-4-methoxy-2-naphthylamide. J Biophys Biochem Cytol 1960;7:261-261.
  • 23
    Mozeš Š, Šefcíková Z, Lenhardt L. Functional changes of the small intestine in over- and undernourished suckling rats support the development of obesity risk on a high-energy diet in later life. Physiol Res 2007;56:183-183.
  • 24
    Kalliomäki M, Collado MC, Salminen S, Isolauri E. Early differences in fecal microbiota composition in children may predict overweight. Am J Clin Nutr 2008;87:534-534.
  • 25
    Santacruz A, Marcos A, Wärnberg J, et al. Interplay between weight loss and gut microbiota composition in overweight adolescents. Obesity 2009;17:1906-1906.
  • 26
    Swann JR, Tuohy KM, Lindfors P, et al. Variation in antibiotic-induced microbial recolonization impacts on the host metabolic phenotypes of rats. J Proteome Res 2011;10:3590-3590.
  • 27
    Yin YN, Yu QF, Fu N, Liu XW, Lu FG. Effects of four Bifidobacteria on obesity in high-fat diet induced rats. World J Gastroenterol 2010;16:3394-3394.
  • 28
    Fleissner CK, Huebel N, Abd El-Bary MM, Loh G, Klaus S, Blaut M. Absence of intestinal microbiota does not protect mice from diet-induced obesity. Br J Nutr 2010;104:919-919.
  • 29
    Martinková A, Lenhardt L, Mozeš Š. Effect of neonatal MSG treatment on day–night alkaline phosphatase activity in the rat duodenum. Physiol Res 2000;49:339-339.
  • 30
    Racek L, Lenhardt L, Mozeš Š. Effect of fasting and refeeding on duodenal alkaline phosphatase activity in monosodium glutamate obese rats. Physiol Res 2001;50:365-365.
  • 31
    Ghafoorunissa SA. Influence of dietary partially hydrogenated fat high in trans fatty acids on lipid composition and function of intestinal brush border membrane in rats. J Nutr Biochem 2001;12:116-116.
  • 32
    Kaur J, Madan S, Hamid A, Singla A, Mahmood A. Intestinal alkaline phosphatase secretion in oil-fed rats. Dig Dis Sci 2007;52:665-665.
  • 33
    Mozeš Š, Šefcíková Z, Lenhardt L, Racek L. Obesity and changes of alkaline phosphatase activity in the small intestine of 40- and 80-day-old rats subjected to early postnatal overfeeding or monosodium glutamate. Physiol Res 2004;53:177-177.
  • 34
    Narisawa S, Huang L, Iwasaki A, Hasegawa H, Alpers DH, Millán JL. Accelerated fat absorption in intestinal alkaline phosphatase knockout mice. Mol Cell Biol 2003;23:7525-7525.
  • 35
    Nakano T, Inoue I, Koyama I, et al. Disruption of the murine intestinal alkaline phosphatase gene Akp3 impairs lipid transcytosis and induces visceral fat accumulation and hepatic steatosis. Am J Physiol Gastrointest Liver Physiol 2007;292:G1439-G1449.
  • 36
    Malo MS, Alam SN, Mostafa G, et al. Intestinal alkaline phosphatase preserves the normal homeostasis of gut microbiota. Gut 2010;59:1476-1476.
  • 37
    Fiorotto ML, Burrin DG, Perez M, Reeds PJ. Intake and use of milk nutrients by rat pups suckled in small, medium, or large litters. Am J Physiol 1991;260:R1104-R1113.
  • 38
    Purcell RH, Sun B, Pass LL, Power ML, Moran TH, Tamashiro KL. Maternal stress and high-fat diet effect on maternal behavior, milk composition, and pup ingestive behavior. Physiol Behav 2011;104:474-474.
  • 39
    Qian J, Chen T, Lu W, Wu S, Zhu J. Breast milk macro- and micronutrient composition in lactating mothers from suburban and urban Shanghai. J Paediatr Child Health 2010;46:115-115.
  • 40
    Plagemann A, Harder T, Rake A, et al. Perinatal elevation of hypothalamic insulin, acquired malformation of hypothalamic galaninergic neurons, and syndrome x-like alterations in adulthood of neonatally overfed rats. Brain Res 1999;836:146-146.