SEARCH

SEARCH BY CITATION

References

  • 1
    Kraemer WJ, Volek JS, Clark KL et al. Influence of exercise training on physiological and performance changes with weight loss in men. Med Sci Sports Exerc 1999; 31: 13201329.
  • 2
    Goodyear LJ, Kahn BB. Exercise, glucose transport, and insulin sensitivity. Annu Rev Med 1998; 49: 235261.
  • 3
    Haugaard SB, Madsbad S, Høy CE, Vaag A. Dietary intervention increases n-3 long-chain polyunsaturated fatty acids in skeletal muscle membrane phospholipids of obese subjects. Implications for insulin sensitivity. Clin Endocrinol (Oxf) 2006; 64: 169178.
  • 4
    McMurchie EJ. Dietary lipids and the regulation of membrane fluidity and function. In: Roland C (ed). Physiological Regulation of Membrane Fluidity. AR Liss: New York, 1988, pp 189237.
  • 5
    Liu S, Baracos VE, Quinney HA, Clandinin MT. Dietary omega-3 and polyunsaturated fatty acids modify fatty acyl composition and insulin binding in skeletal-muscle sarcolemma. Biochem J 1994; 299 (Pt 3): 831837.
  • 6
    Plans P, Espuñas J, Romero N et al. [The association between arterial hypertension, obesity and hypercholesterolemia in a sample of the adult population of Catalonia]. An Med Interna 1994; 11: 278284.
  • 7
    Bray GA, Popkin BM. Dietary fat intake does affect obesity! Am J Clin Nutr 1998; 68: 11571173.
  • 8
    Bastiaanse EM, Höld KM, Van der Laarse A. The effect of membrane cholesterol content on ion transport processes in plasma membranes. Cardiovasc Res 1997; 33: 272283.
  • 9
    Andersson A, Nälsén C, Tengblad S, Vessby B. Fatty acid composition of skeletal muscle reflects dietary fat composition in humans. Am J Clin Nutr 2002; 76: 12221229.
  • 10
    Koter M, Franiak I, Strychalska K, Broncel M, Chojnowska-Jezierska J. Damage to the structure of erythrocyte plasma membranes in patients with type-2 hypercholesterolemia. Int J Biochem Cell Biol 2004; 36: 205215.
  • 11
    Ohvo-Rekilä H, Ramstedt B, Leppimäki P, Slotte JP. Cholesterol interactions with phospholipids in membranes. Prog Lipid Res 2002; 41: 6697.
  • 12
    Susumu T, Hidenori O, Kazushi T et al. Degree of fatty acyl chain unsaturation in biliary lecithin dictates cholesterol nucleation and crystal growth. Biochim Biophys Acta 1994; 1215: 7478.
  • 13
    Hazel JR, Williams EE. The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment. Prog Lipid Res 1990; 29: 167227.
  • 14
    Tomeczkowski J, Ludwig A, Kretzmer G. Effect of cholesterol addition on growth kinetics and shear stress sensitivity of adherent mammalian cells. Enzyme Microb Technol 1993; 15: 849853.
  • 15
    Clarke MSF, Pritchard KA, Medow MS, McNeil PL. An atherogenic level of native ldl increases endothelial cell vulnerability to shear-induced plasma membrane wounding and consequent release of basic fibroblast growth factor. Endothelium 1996; 4: 127139.
  • 16
    Salvadori A, Fanari P, Ruga S, Brunani A, Longhini E. Creatine kinase and creatine kinase-MB isoenzyme during and after exercise testing in normal and obese young people. Chest 1992; 102: 16871689.
  • 17
    Paschalis V, Nikolaidis MG, Giakas G et al. Beneficial changes in energy expenditure and lipid profile after eccentric exercise in overweight and lean women. Scand J Med Sci Sports 2010; 20: e103e111.
  • 18
    Haubold KW, Allen DL, Capetanaki Y, Leinwand LA. Loss of desmin leads to impaired voluntary wheel running and treadmill exercise performance. J Appl Physiol 2003; 95: 16171622.
  • 19
    Lynch GS, Fary CJ, Williams DA. Quantitative measurement of resting skeletal muscle [Ca2+]i following acute and long-term downhill running exercise in mice. Cell Calcium 1997; 22: 373383.
  • 20
    Clarke MS, Khakee R, McNeil PL. Loss of cytoplasmic basic fibroblast growth factor from physiologically wounded myofibers of normal and dystrophic muscle. J Cell Sci 1993; 106 (Pt 1): 121133.
  • 21
    McNeil PL, Khakee R. Disruptions of muscle fiber plasma membranes. Role in exercise-induced damage. Am J Pathol 1992; 140: 10971109.
  • 22
    McNeil PL, Clarke MSF, Miyake K. Cell Wound Assays, in Current Protocols in Cell Biology. John Wiley & Sons: Hoboken, NJ, 1999, pp 12.4.112.4.15.
  • 23
    Armstrong RB, Ogilvie RW, Schwane JA. Eccentric exercise-induced injury to rat skeletal muscle. J Appl Physiol 1983; 54: 8093.
  • 24
    Straub V, Rafael JA, Chamberlain JS, Campbell KP. Animal models for muscular dystrophy show different patterns of sarcolemmal disruption. J Cell Biol 1997; 139: 375385.
  • 25
    Adams GR. Satellite cell proliferation and skeletal muscle hypertrophy. Appl Physiol Nutr Metab 2006; 31: 782790.
  • 26
    Crameri RM, Langberg H, Magnusson P et al. Changes in satellite cells in human skeletal muscle after a single bout of high intensity exercise. J Physiol (Lond) 2004; 558: 333340.
  • 27
    Darr KC, Schultz E. Exercise-induced satellite cell activation in growing and mature skeletal muscle. J Appl Physiol 1987; 63: 18161821.
  • 28
    Vierck J, O'Reilly B, Hossner K et al. Satellite cell regulation following myotrauma caused by resistance exercise. Cell Biol Int 2000; 24: 263272.
  • 29
    Roth SM, Martel GF, Ivey FM et al. Skeletal muscle satellite cell characteristics in young and older men and women after heavy resistance strength training. J Gerontol A Biol Sci Med Sci 2001; 56: B240B247.
  • 30
    Sheehan SM, Allen RE. Skeletal muscle satellite cell proliferation in response to members of the fibroblast growth factor family and hepatocyte growth factor. J Cell Physiol 1999; 181: 499506.
  • 31
    Sishi B, Loos B, Ellis B et al. Diet-induced obesity alters signalling pathways and induces atrophy and apoptosis in skeletal muscle in a prediabetic rat model. Exp Physiol 2011; 96: 179193.
  • 32
    Uchino M, Chou SM. Effects of calcium ionophore, a23187 on murine muscle. Proc Japan Acad 1980; 56: 480485.
  • 33
    Verburg E, Dutka TL, Lamb GD. Long-lasting muscle fatigue: partial disruption of excitation-contraction coupling by elevated cytosolic Ca2+ concentration during contractions. Am J Physiol, Cell Physiol 2006; 290: C1199C1208.
  • 34
    Belcastro AN, Shewchuk LD, Raj DA. Exercise-induced muscle injury: a calpain hypothesis. Mol Cell Biochem 1998; 179: 135145.
  • 35
    Hidalgo C. Physical Properties of Biological Membranes and Their Functional Implications. Plenum Press: New York, 1988.
  • 36
    Luckey M. Membrane Structural Biology: With Biochemical and Biophysical Foundations. Cambridge University Press: New York, NY, 2008.
  • 37
    García JJ, Piñol-Ripoll G, Martínez-Ballarín E et al. Melatonin reduces membrane rigidity and oxidative damage in the brain of SAMP8 mice. Neurobiol Aging 2011; 32: 20452054.
  • 38
    Sposito AC. Emerging insights into hypertension and dyslipidaemia synergies. Eur Heart J 2004; 6: G8G12.
  • 39
    Vance JE, Vance DE. Biochemistry of Lipids, Lipoproteins and Membranes, 5th edn, Elsevier: Oxford, UK, 2008.
  • 40
    Ipatova OM, Torkhovskaya TI, Zakharova TS, Khalilov EM. Sphingolipids and cell signaling: involvement in apoptosis and atherogenesis. Biochemistry Mosc 2006; 71: 713722.