The question of cyclic versus acyclic ions: The structure of [C10H12]+˙ gas phase ions



The extent of isomerization of acyclic and cyclic gas phase radical cations of composition [C10H12]+˙ has been investigated by using collisionally activated dissociation spectroscopy. Both electron and charge exchange ionizaiton were employed to form the ions with various internal energies. The [C10H12]+˙ ions investigated consisted of ionized phenylbutenes, ring-substituted methyl derivatives of allylbenzene and phenylpropene, 1-methyl-2-isopropenylbenzene, benzylcyclopropane, phenylcyclobutane, tetralin and 1-methylindan. The 1-methylindan and tetralin radical cations are the most stable of the C10H12 isomeric radical ions. The [C10H12]+˙ formed from acyclic olefins having the double bond in conjugation with the aromatic ring retain the initial structure to a significant extent. However, ions derived from olefins with the double bond out of conjugation with the benzene ring preferentially cyclize to stable five- and six-membered cyclic ions. Ring opening of small-ring cyclic ions, such as ionized benzylcyclopropane and phenylcyclobutane, occurs, followed by ring closure to the tetralin radical cation.