• ferrocene ligands;
  • phosphane ligands;
  • hybrid ligands;
  • gold complexes;
  • palladium complexes


1-(N,N-Dimethylaminomethyl)-1′-(diphenylphosphanyl)ferrocene (1) was synthesized in good yield by lithiation of 1-bromo-1′-(diphenylphosphanyl)ferrocene and subsequent reaction with Eschenmoser’s salt (dimethylmethylideneammonium iodide). Making use of an easily accessible, nontoxic starting material, this procedure represents a convenient alternative to the original synthetic protocol based on stepwise lithiation/functionalization of 1,1′-bis(tributylstannyl)ferrocene and reductive amination [M. E. Wright, Organometallics 1990, 9, 853–856]. Compound 1 has typical hybrid-donor properties. When reacted with [AuCl(tht)] (tht=tetrahydrothiophene), it afforded the expected AuI phosphane complex [AuCl(1-κP)] (2). An attempted removal of the chloride ligand from 2 with AgClO4 produced an ill-defined material formulated as Au(1)ClO4. The uncoordinated amine substituent reacted with traces of hydrogen chloride formed by slow decomposition typically occurring in solution. In this manner, complexes [AuCl(Ph2PfcCH2NHMe2)]Cl (3, fc=ferrocene-1,1′-diyl) and [AuCl(Ph2PfcCH2NHMe2)]ClO4 (4) were isolated from crystallizations experiments with 2 and Au(1)ClO4, respectively. On a larger scale, complex 3 was prepared easily from 2 and hydrogen chloride. The course of reactions between [PdCl2(cod)] (cod=cycloocta-1,5-diene) and 1 were found to depend on the ligand-to-metal ratio. Whereas the reaction with two equivalents of 1 afforded bis(phosphane) complex trans-[PdCl2(1-κP)2] (5), that of a Pd:P ratio 1:1 produced ligand-bridged dimer [(μ-1)PdCl2]2 (6). With hydrogen chloride, complex 6 reacted to afford zwitterionic complex [PdCl3(1H-κP)] (7), which was also formed when ligand 1 and [PdCl2(cod)] were allowed to react slowly by liquid-phase diffusion of their chloroform solutions. The compounds were characterized by spectroscopic methods (multinuclear NMR and ESI–MS), and the molecular structures of complex 24, 6⋅2CHCl3 and 7⋅1.5CHCl3 were determined by single-crystal X-ray diffraction analysis.