Tuning of the LCPBE0 functional for TPP
A systemspecific tuning of the LCPBE0 functional for TPP was carried out by minimizing J′^{2}, of Equation (1), as a function of the rangeseparation parameter γ in the exchange functional. Here, N is the number of electrons for neutral TPP.(1)
 (1)
Specifically, we used the following rangeseparation of 1/r_{12} in the exchange [Equation (2)]:32(2)
 (2)
The ionization potential (IP) is calculated as the difference of total energies, IP(N)=E(N−1)−E(N), and similarly for the corresponding (N+1)electron system. Further, ε^{HOMO} is the energy of the highest occupied molecular orbital (HOMO). For the elusive exact universal density functional, J′^{2}=0, the negative of the HOMO orbital energy would correspond exactly to the first ionization potential (IP). For an approximate functional, the idea is to determine the rangeseparation parameter such that an optimally small J′^{2} is obtained, thereby giving physical meaning to the HOMO energy of both the Nelectron and the (N+1)electron system. The process is thought to improve the fundamental gap.42 The other two parameters in Equation (2), α=0.25 and β=0.75, were kept as in the originally proposed parametrization,35 which affords . We noted in previous work that tuning according to the IP criterion requires α+β=1.40, 41 For a procedure to determine α to minimize the DFT delocalization error simultaneously with an optimal tuning of γ per Equation (1), see Ref. 40. The DFT delocalization error67 can be quantified by the behavior of E(N) for fractional and integer electron numbers N. The exact energy should afford linear segments between integers, with slopes changing discontinuously68 at integer values of N. Curvature in plots of E(N) is therefore indicative of delocalization error.
In Figure 2, J′^{2} calculated for TPP is shown for varying γ. Recent theoretical studies have shown27, 41 that as the size of a conjugated delocalized π system increases, the optimal rangeseparation parameter γ tends to decrease. In turn, γ is the reciprocal of a cutoff distance beyond which HF exchange in the functional starts to dominate. That is, a reduced value of γ indicates that the delocalized π system benefits from local DFT exchange acting over a longer range of interelectronic distances. The optimal γ^{*} value for TPP is 0.105, that is, much below the originally proposed value of 0.3.
The behavior of E(N) as a function of a fractional electron number N is compared, in Figure 3, for the original parametrization of LCPBE0 (α=0.25, β=0.75, γ=0.3) and the tuned version (γ^{*}=0.105). We refer to the tuned functional as LCPBE0γ^{*} from here on.
The stock parametrization of LCPBE0 affords delocalization error for TPP, as demonstrated by the curvature in E(N). The negative curvature indicates that, for TPP, the value γ=0.3 gives too little delocalization. The behavior of E(N) for the tuned functional is much better. The curvature is nearly vanishing for both the electrondeficient and the electronrich species. Because of the reasonably small curvatures obtained with γ^{*} at α=0.25, we decided to forego a simultaneous optimization of α and γ for TPP.
TPP excitation spectrum
Since the excitation spectrum of TPP in this work is used as the input for the matrix method (MM) coupling model, it is important to assess the quality of the spectrum calculated at various levels of theory. The currently accepted assignment of the experimental TPP spectrum, in reference to the Gouterman model,69 is as follows: Weak absorption bands (Qbands) at 1.86 eV (Q_{x}) and 2.26 eV (Q_{y}) are assigned to HOMOtoLUMO and HOMOtoLUMO+1 transitions, respectively, in a molecular orbital (MO) representation. Isosurfaces of the relevant MOs are shown in Figure 4. A very intense absorption band around 3.06 eV, commonly referred to as the Soret band, is caused by a pair of transitions (B_{x}, B_{y}) that are assigned to HOMO−1toLUMO and HOMO−1toLUMO+1, respectively. The pairs of excitations responsible for the Q and B bands are calculated as ^{1}B_{3u}/^{1}B_{2u} pairs. The symmetry labels for the excitations refer to the D_{2h} point group, even though the symmetry of the optimized TPP geometry is lower (C_{2v}). However, the MO contributions to the excitations and the MO nodal patterns are similar to porphin as described by the Gouterman model. Note that the N transitions, assigned in previous and current works, are not considered in the Gouterman model, and therefore alternate criteria were taken from the literature. An excitation around 3.5 eV (N_{x}) has been assigned to a ^{1}B_{3u} excited state in Ref. 70 based on similaritytransformed equationofmotion coupledcluster singles and doubles (STEOMCCSD) calculations on free base porphin. From Ref. 63, the N_{y} transition was assigned to the corresponding porphin ^{1}B_{2u} excitation with dominant MO contributions from HOMO−3 to LUMO+1 which is consistent with the calculations in this article. The spectral features of TPP above 4 eV are ignored in this work since the Q, B, and N transitions are the ones most important for the experimentally observed exciton coupling CD of TPP dimers.
In Table 1, the Q, B, and N transitions of TPP calculated by TDHF, and by TDDFT with various functionals, are compared with previously reported calculated63 and with experimental data.71 The transition assignments were made based on the dominant contributions from occupied (occ) and unoccupied (unocc) MOs to the excitation transition densities, and in comparison with previous porphin70, 72 and TPP63 calculations as well as the Gouterman model. The frontier orbitals obtained with Becke88–Perdew86 (BP) and LCPBE0 are compared in Figure 4. Differences between the MOs obtained with different functionals are hardly visible in the isosurface plots. The nodal patterns of the frontier orbitals match those of the Gouterman model69 and agree with previous DFT calculations.63, 73
Table 1. Computed excitation energies ΔE [eV] and oscillator strengths f for the Q, B, and N transitions of TPP.  TDHF  BP  LCPBE0  Tuned LCPBE0  PBE0^{[a]}  CAMB3LYP^{[a]}  M052X^{[a]}  Exp.^{[b]} 


Q_{x}(^{1}B_{3u})  1.63  2.02  1.91  2.16  2.21  2.11  2.22  1.86 
f  0.00  0.03  0.01  0.02  0.04  0.02  0.02  
ΔE  −0.23  0.16  0.05  0.30  0.35  −0.25  0.36  
Q_{y}(^{1}B_{2u})  1.78  2.14  2.18  2.34  2.36  2.31  2.41  2.26 
f  0.00  0.05  0.03  0.05  0.05  0.03  0.04  
ΔE  −0.48  −0.12  −0.08  0.08  0.10  0.05  0.15  
B_{x}(^{1}B_{3u})  3.71  3.13  3.47  3.28  3.18  3.28  3.32  3.06 
f  1.77  0.89  1.44  1.07  1.43  1.68  1.75  
ΔE  0.65  0.07  0.41  0.22  0.12  0.22  0.26  
B_{y}(^{1}B_{2u})  3.77  3.09  3.54  3.39  3.33  3.33  3.36  
f  2.07  1.05  1.74  1.52  1.73  1.92  1.94  
ΔE  0.71  0.03  0.48  0.33  0.27  0.27  0.30  
N_{x}(^{1}B_{3u})  4.85  3.73^{[}*^{]}  4.34  3.82  3.67  4.08  4.13  ∼3.5 
f  0.63  0.18  0.55  0.64  0.39  0.45  0.39  
ΔE  1.35  0.23  0.84  0.32  0.17  0.58  0.63  
N_{y}(^{1}B_{2u})  5.57  3.75^{[}*^{]}  4.80  3.93  3.78  4.43  4.48  
f  0.07  0.17  0.02  0.09  0.05  0.05  0.04  
ΔE  2.07  0.25  1.3  0.43  0.28  0.93  0.98  
Simulated spectra are shown in Figure 5. The THDF calculation yields Q bands which are red shifted with respect to the experiment, while the B and N bands are blue shifted. The assignment of the transitions, based on dominant contributions to the transition density matrix from occupied and unoccupied MOs, is in qualitative agreement with the Gouterman model. The N bands can be assigned as transitions from HOMO−4 to LUMO (N_{x}) and HOMO−4 to LUMO+1 (N_{y}) where HOMO−4 of the HF calculation is equivalent to HOMO−3 for the DFT calculation of Ref. 63 and the present calculations for BP, LCPBE0, and tuned LCPBE0.
The BP functional yields blue shifted Q_{x} and red shifted Q_{y} transitions, with an assignment of these excitations that is in agreement with the Gouterman model. According to this model and the accepted assignment of the spectrum, the B_{x} excitation should be lower in energy than B_{y}. The BP functional incorrectly reverses the energies. This finding is consistent with a BP spectrum previously reported in Ref. 74. An apparent N band may be attributed to a modestly intense pair of transitions at 3.7 eV, but the excitations do not have the expected MO contributions. With the BP functional, the excitations with strong HOMO−3toLUMO and HOMO−3toLUMO+1 character expected for the N transitions appear at lower energy than the Soret peak, that is, below 3 eV. Moreover, the BP ‘stick spectrum’ in Figure 5 reveals many spurious excitations, in particular between 3 and 4 eV, with (mostly) low intensity. These transitions are not seen in the other spectra obtained with HF and asymptotically correct density functionals. The occurrence of these spurious transitions is likely a consequence of the incorrect longrange behavior of the BP exchangecorrelation (XC) potential. In recent work, Baer, Kronik et al. noted that ‘chargetransferlike’ excitations may occur in extended π chromophores, which render calculations with functionals that do not afford the correct longrange behavior suspicious.39 The XC potentials of TDHF and LCPBE0 (standard and tuned version) afford the correct longrange behavior, and therefore spurious transitions are not as prevalent. Clearly, the BP spectrum is seriously deficient despite the fact that the broadened absorption intensity resembles the experimental spectrum reasonably well.
The LCPBE0 and LCPBE0γ^{*} functionals predict blue shifted Q, B, and N bands when compared to experiment (with the exception of Q_{y} calculated with LCPBE0). The tuning procedure is designed to improve the HOMO–LUMO energy difference toward the fundamental gap, and it has been shown that TDDFT response calculations based on the resulting functionals provide improved excitation energies as well42 (where, similar to HF, the optical gap is calculated to be smaller than the HOMO–LUMO gap). From Table 1, the Q_{x} transition is seen to be predicted worse for the tuned functional than for the stock parametrization. For all other transitions, however, the tuned LCPBE0γ^{*} functional gives excitation energies that are closer to the experimental band maxima. The γ tuning also closes the gap between the B and N bands, which is favorable.
In Figure 6, the BP and tuned LCPBE0 absorption spectra are compared to calculated spectra reported previously in the literature (GW+BSE73 and TDDFT with the PBE0 functional63) and to an experimental spectrum.71 The TDHF spectrum is excluded because the excitation energies do not agree well with experiment. LCPBE0 is also excluded because the tuned version yields an overall better spectrum. The GW+BSE and PBE0 spectra were generated by Gaussian line broadening (σ=0.13) based on excitation data taken from Ref. 73 and Ref. 63, respectively. For better comparison, the Soret maxima were scaled to the same value and the spectra are given in arbitrary units (a.u.).
The BP density functional is computationally rather inexpensive. However, as pointed out above, despite the apparent reasonable agreement with experiment, the deficiencies of the functional are clear when considering the assignments of the relevant transitions. For instance, the reader is reminded that the ‘N’ band in the BP spectrum is not the Nband proper. The computational savings from not including exact exchange (and a range separation of the exchange) are also not as advantageous as one might think because of the need to calculate a large number of excitations to cover the spectral range up to 4 eV (most of which are unphysical). This problem is exacerbated in the dimer calculations discussed below. The tuned LCPBE0γ^{*} functional performs well in comparison. We also note good agreement of the tuned hybrid with the GW+BSE calculation, apart from a modest blue shift.
Dimer calculations: TDHF, TDDFT, and the dipole coupling model
A TPP dimer was investigated in a relative arrangement approximating the geometry of BTXD, as described in the computational details. The dimer model along with the relative orientation of two selected transition moments (B_{x}) is shown in Figure 7. This TPP dimer was used for all calculations discussed in this subsection.
Given the large separation of the chromophores, it is important to investigate if the CD spectra calculated for the full dimer are affected by the gaugeorigin problem of magnetic properties in finitebasis set calculations (see Ref. 62 and Ref. 75 for a detailed discussion of the problem in the context of CD spectra calculations, and for additional literature devoted to this topic).
Figure 8 shows a comparison of TDHF calculations of the full dimer CD spectrum based on different rotatorystrength representations: dipolelength (standard basis), dipolevelocity, and dipolelength with use of gaugeincluding atomic orbital (GIAO) basis functions. The velocity and GIAO rotatory strengths are both origin invariant by design, but the velocitygauge may be affected more strongly by basisset incompleteness. As the calculated CD spectra demonstrate, there is virtually no difference between the three CD spectra. Consequently, in order to save computational resources, all other dimer calculations have been performed with the dipolelength gauge without GIAOs.
In the matrix method (MM) coupling model, the individual excitations in individual chromophores are treated as quasiparticles (excitons) that interact electrostatically via their electric and magnetic multipole moments. For details and additional citations to original references not cited herein please see the Appendix of our previous work.10 A coupled dimer with a single transition per monomer, for instance, is described by the Hamiltonian [Equation (3)],(3)
 (3)
where the monomer excitations are labeled a, b, etc. and have energies E_{a}, E_{b}, etc. To lowest order in the multipole expansion, the coupling only considers the electric transition dipole moment vectors d_{a}, d_{b}, etc., which gives rise to the electrostatic interaction [Equation (4)]:
 (4)
Here, r_{ab}=r_{b}−r_{a} is the distance vector between the chromophore centers r_{a} and r_{b} (we use the center of nuclear charge), and r_{ab} its length. Electrostatic units are used, where the square of an electric dipole divided by a volume yields an energy, and a magnetic dipole has the same unit as the electric dipole. In SI units, the equation for the potential carries an additional factor of (4πε_{0})^{−1}. In the MM, the magnetic transition dipoles associated with the uncoupled excitations are obtained from the electric transition dipoles via Equation (5).(5)
 (5)
The excitation energies of the coupled system are the eigenvalues of H. To facilitate the next step, the eigenvectors of H are collected columnwise in a matrix C, and the uncoupled electric and magnetic transition dipoles are collected in matrices D^{0} and M^{0}, respectively. The coupled transition moments d_{i}, m_{i} for excitations i=1, 2, etc. in the compound system are then obtained as the columns of the matrix products D^{0}C and M^{0}C. The rotatory strength of each coupled transition i is given as and the dipole strength as . In the MM spectra reported in this subsection, the transition dipoles from a number M calculated excitations for the TPP monomer (using M=25 for TDHF, LCPBE0, and LCPBE0γ^{*}, and M=100 for BP) have been used in the coupling model. That is, dipole interactions between pairs of transition dipoles centered on different TPP moieties were calculated and used in a 2 M by 2 M matrix model in order to obtain the coupled excitation energies and rotatory strengths for the dimer.
Figure 9 displays the broadened CD spectra of the TPP dimer of Figure 7 obtained using the matrix method with calculated TPP monomer spectral data, and from full dimer calculations. The MM spectra generated from monomer data for a particular functional are indicated by dashed lines. For the theoretical methods that afford a correct longrange behavior of the XC potential (TDHF, and TDDFT with LC functionals), the agreement with the full dimer spectra is excellent. Some deviations occur near the highenergy cutoff of the spectra. We consider this an artifact of the upperenergy cutoff for the TDDFT dimer spectra, made necessary by the memory limitations of the code used. That is, the upper energy range of the broadened dimer spectra may change in intensity if additional, possibly intense, excitations were available to generate the broadened spectra. For the exciton CD in the energy range of the calculated TPP Soret bands, the excellent agreement of the MM spectra with the full TDDFT spectra (HF and LC functionals) demonstrates that this couplet is indeed attributable to longrange dipole interactions of the intense TPP B transitions, along with some dipolecoupling contributions from the Q and N transitions.
The BP dimer spectrum is clearly affected strongly by the TDDFT CT problem. The dimer calculation afforded a large number of spurious transitions; over 150 excitations were needed to cover the rather small energy range shown in Figure 9. For comparison, 100 excitations in the BP monomer spectrum, many of which are already spurious, reach up to 5.1 eV. Some of the deficiencies noted for the TPP monomer spectrum are not hidden anymore in the dimer. A MM CD spectrum constructed from the Q, B, and higher energy (‘N′) transitions of the BP calculation (Figure 9 B) leaves out spurious transitions and shows that such a coupling would at least yield a qualitatively correct spectrum. In contrast, at 42 Å separation of the TPP moieties, the LCPBE0 calculations (standard and tuned versions) afford the expected physically correct picture: The exciton CD of the dimer just above 3 eV is caused by simple electrostatic coupling, mainly, of the TPP B transition dipoles.
The deficiencies in the BP dimer TDDFT CD spectrum therefore have several origins. For instance, the MM(BP) spectrum displays a lowenergy tail of the first (negative) CD band that is not visible in the dimer calculations with the other functionals. As pointed out above, the excitations that would be expected to form the TPP N band are obtained as preSoret features in the BP monomer spectrum (see also Ref. 74). It is the dipole coupling of these excitations that creates the intense lowenergy tail in the MM(BP) CD spectrum. The full dimer TDDFT spectrum, however, is not even in agreement with the dipole coupling model based on deficient BP monomer data. The chargetransfer problem/wrong asymptotic behavior of the XC potential creates many additional spurious excitations, along with exciton CD from coupling among these and more physical transitions. These problems render the BP dimer CD spectrum altogether unreliable. For truly longrange coupling of excitations, it is possible that any ‘pure’ functional component with a wrong asymptotic behavior causes problems akin to those found for BP. This would also affect popular functionals such as B3LYP or PBE0 which afford only 20 and 25 % HF exchange, globally, in the exchange part of the functional. In comparison, the LC hybrid functionals appear unproblematic, as expected.
Figure 10 displays MM spectra obtained from BP and LCPBE0γ^{*} next to an experimental CD spectrum for BTXD (see Computational Details). Based on the intensity of the simulated CD spectra, considering that computed intensities may typically deviate from experiment by factors of two, the magnitude of the BTXD circular dichroism is consistent with exciton coupling of the TPP Soret (B) transitions at distances of 40–50 Å. Additional features seen in the experimental BTXD spectrum but not in the MM(LCPBE0γ^{*}) spectrum may be potentially attributed to excitations in the steroid backbone, vibronic fine structure of the excitations, the conformational flexibility of BTXD, and possibly interactions of BTXD with the solvent. The calculated spectra have been broadened empirically, with a uniform Gaussian width independent of the excitation energy. The full TDDFT dimer spectra in Figure 9 as well as the MM spectra indicate that the exciton couplet from the Soret bands can be nonconservative, for instance due to coupling of additional transitions with the B transitions. Moreover, if the broadening of the spectrum increases significantly at higher energies (shorter wavelengths), the observed trough and peak heights of the exciton CD couplet would differ. It is possible that such mechanisms lead to the much weaker observed CD intensity above 3 eV (below about 420 nm) in the experimental spectrum, compared to the negative CD band between 2.9 and 3 eV. However, other factors cannot be ruled out at this point. A full modeling of the spectrum would require exploration of the conformational space of BTXD along with solvent effects, which is beyond the scope of this work. We note in passing that forcefield based dynamics and conformer searches may bias calculations toward certain configurations.76 Careful benchmarks, possibly in comparison to ab initio molecular dynamics, appear to be in order.
An interesting point arising from the comparison in Figure 10 is the apparently ‘best’ agreement of the MM(BP) spectrum with the experimental CD of BTXD. Based on the analysis presented above, the lowenergy tail in the MM(BP) spectrum is generated by exciton coupling of spurious preSoret Ntype transitions in the monomer. Therefore, this calculated MM(BP) spectrum looks more similar to experiment than the other dimer spectra presented in this section for entirely wrong reasons. More accurate calculations with LC functionals expose this problem.
In the remainder of this section we consider additional aspects of the dimer exciton CD that can be extracted from the dipole coupling model. To facilitate the discussion, consider first a simplified MM setup with two degenerate uncoupled transitions, E_{a}=E_{b}=E, at a distance r, with identical electric transition dipole magnitudes d_{a}=d_{b}=d. For a situation where the two dipole vectors form angles of α_{a} and α_{b}, respectively, with r_{ab} as shown in Figure 11, and adopt a dihedral angle of β along r_{ab}, the potential V_{ab}=V_{ba}=V works out to be as given by Equation (6).(6)
 (6)
The excitation energies for the coupled system are E_{1/2}=E±V. The corresponding rotatory and dipole strengths are given by Equations (7 a) and (7 b).(7a), (7b)
 (7a)
 (7b)
As expected, the rotatory strengths change sign as the dihedral angle changes sign because of the sin β term. The sin α_{a/b} terms also indicate that the rotatory strengths vanish if one of the dipoles points along the interchromophore vector.
The CD couplets seen experimentally for TPP dimers have been assigned to coupling between the intense Soret transitions, which is consistent with our dimer calculations. The transition dipole vectors for the B transitions lie in the porphin plane. Assume a parallel TPP stack, that is α_{a}=α_{b}=90 °. If only two transitions were coupled, one B_{x} or B_{y} from each monomer, the dihedral angle adopted in the dimer model of Figure 7 would produce a couplet with the opposite sign of the full TDDFT or MM spectra, and opposite to experiment.
A MM coupling model for both monomer transitions, B_{x} and B_{y}, results in a 4×4 Hamiltonian matrix. As additional data demonstrate (see the Supporting Information), for a ‘stackeddisk’ arrangement, the exciton CD vanishes if the monomer transitions are degenerate or nearly degenerate. As long as the excitations are degenerate, the CD couplet is negligible in a onesidetilted stackeddisk arrangement (α_{a}=90 ° and α_{b}≠90 °). A substantially stronger exciton CD is created for relative monomer orientations with both α angles deviating substantially from 90 ° and, optionally, a substantial energetic splitting between the B_{x} and B_{y} transitions of the monomer. These conditions are fulfilled for the dimer model shown in Figure 7. Therefore, the single TPP dimer conformer used to represent an approximate average BTXD structure affords a physically reasonable setup, geometrically and electronically as far as the TPP moieties are concerned, for a study of the longrange exciton CD of porphyrinbased chromophore dimers.