SEARCH

SEARCH BY CITATION

Keywords:

  • ab initio calculations;
  • carbohydrates;
  • conformational analysis;
  • infrared spectroscopy;
  • molecular recognition;
  • Raman spectroscopy

Abstract

Carbohydrates are used in nature as molecular recognition tools. Understanding their conformational behavior upon aggregation helps in rationalizing the way in which cells and bacteria use sugars to communicate. Here, the simplest α-hydroxy carbonyl compound, glycolaldehyde, was used as a model system. It was shown to form compact polar C2-symmetric dimers with intermolecular O[BOND]H⋅⋅⋅O[DOUBLE BOND]C bonds, while sacrificing the corresponding intramolecular hydrogen bonds. Supersonic jet infrared (IR) and Raman spectra combined with high-level quantum chemical calculations provide a consistent picture for the preference over more typical hydrogen bond insertion and addition patterns. Experimental evidence for at least one metastable dimer is presented. A rotational spectroscopy investigation of these dimers is encouraged, also in view of astrophysical searches. The binding motif competition of aldehydic sugars might play a role in chirality recognition phenomena of more complex derivatives in the gas phase.