SEARCH

SEARCH BY CITATION

References

  • Anderson, R. F., S. Ali, L. I. Bradtmiller, S. H. H. Nielsen, M. Q. Fleisher, B. E. Anderson, and L. H. Burckle (2009), Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2, Science, 323, 14431448.
  • Antonov, J. I., T. P. Seidov, T. P. Boyer, R. A. Locarnini, A. V. Mishonovov, H. E. Garcia, O. K. Baranova, M. M. Zweng, and D. R. Johnson (2010), World Ocean Atlas 2009, Vol. 2: Salinity, edited by S. Levitus, NOAA Atlas NESDIS 69, 184 pp., U.S. Government Printing Office, Washington. D. C.
  • Basak, C., E. E. Martin, K. Horikawa, and T. M. Marchitto (2010), Southern Ocean source of 14C-depleted carbon in the North Pacific Ocean during the last deglaciation, Nat. Geosci., 3, 770773.
  • Becquey, S., and R. Gersonde (2003), A 0.55-Ma paleotemperatre record from the Subantarctic zone: Implications for Antarctic Circumpolar Current development, Paleoceanography, 18(1), 1014, doi:10.1029/2000PA000576.
  • Berger, W. H., K. Fisher, C. Lai, and G. Wu (1987), Ocean productivity and organic carbon flux. Part I. Overview and maps of primary production and export productivity, University of California, San Diego. SIO Reference 87–30, 67 pp.
  • Bostock, H. C., B. N. Opdyke, M. K. Gagan, and L. K. Fifield (2004), Carbon isotope evidence for changes in Antarctic Intermediate Water circulation and ocean ventilation in the southwest Pacific during the last deglaciation, Paleoceanography, 19, PA4013, doi:10.1029/2004PA001047.
  • Bostock, H. C., P. J. Sutton, M. J. M. Williams, and B. N. Opdyke (2013), Reviewing the circulation and mixing of Antarctic Intermediate Water in the South Pacific using evidence from geochemical tracers and Argo float trajectories, Deep Sea Res. Oceange. Res. Paper., 73, 8498.
  • Caniupán, M., et al. (2011), Millennial-scale sea surface temperature and Patagonian Ice Sheet changes off southernmost Chile (53°S) over the past ∼ 60 kyr, Paleoceanography, 26, PA3221, doi:10.1029/2010PA002049.
  • Charles, C. D., J. D. Wright, and R. G. Fairbanks (1993), Thermodynamic influences on the marine carbon isotope record, Paleoceanography, 8, 691697.
  • Curry, W. B., J. C. Duplessy, L. D. Labeyrie, and N. J. Shackleton (1988), Changes in the distribution of δ13C of deep water CO2 between the last glaciation and the Holocene, Paleoceanography, 3(3), 317341.
  • De Pol-Holz, R., L. Keigwin, J. Southon, D. Hebbeln, and M. Mohtadi (2010), No signature of abyssal carbon in intermediate waters off Chile during deglaciation, Nat. Geosci., 3, 192195.
  • Dickson, B., J. Hurrell, N. Bindoff, A. Wong, B. Arbic, B. Owens, S. Imawaki, and I. Yashayaev (2001), Chapter 7.3. The world during WOCE, in Ocean Circulation and Climate-Observing and Modelling the Global Ocean, edited by G. Siedler, J. Church, and J. Gould, pp. 557583, Academic Press, San Diego.
  • Duplessy, J. C., N. J. Shackleton, R. G. Fairbanks, L. Labeyrie, D. Oppo, and N. Kallel (1988), Deepwater source variations during the last climatic cycle and their impact on the global deepwater circulation, Paleoceanography, 3(3), 343360.
  • Elderfield, H., P. Ferretti, M. Greaves, S. Crowhurst, I. N. McCave, D. Hodell, and A. M. Piotrowski (2012), Evolution of ocean temperature and ice volume through the Mid-Pleistocene climate transition, Science, 337, 704709.
  • Fischer, H., et al. (2010), The role of Southern Ocean processes in orbital and millennial CO2 variations—A synthesis, Quaternary Sci. Rev., 29(1–2), 193205.
  • Flower, B. P., and J. P. Kennett (1995), Middle Miocene deepwater paleoceanography in the southwest Pacific: Relations with East Antarctic Ice Sheet development, Paleoceanography, 10(6), 10951112.
  • Freudenthal, T., and G. Wefer (2007), Scientific drilling with the sea floor drill rig MeBo, Sci. Drill., 5, 6366, doi:10.2204/iodp.sd.5.11.2007.
  • Freudenthal, T., and G. Wefer (2009), Shallow drilling in the deep sea: The sea floor drill rig MeBo, Oceans '09 IEEE Bremen, IEEE Catalog Number: CFP09OCF-CDR, ISBN: 978-1-4244-2523-5.
  • Gersonde, R., X. Crosta, A. Abelmann, and L. Armand (2005), Sea-surface temperature and sea ice distribution of the Southern Ocean at the EPILOG Last Glacial Maximum—A circum-Antarctic view based on siliceous microfossil records, Quaternary Sci. Rev., 24(7–9), 869896.
  • Hanawa, K., and L. D. Talley (2001), Chapter 5.4. Mode waters, in Ocean Circulation and Climate-Observing and Modelling the Global Ocean, edited by G. Siedler, J. Church, and J. Gould, pp. 373386, Academic Press, San Diego.
  • Hayward, B. W., A. T. Sabaa, A. Kolodziej, M. P. Crundwell, S. Steph, G. H. Scott, H. L. Neil, H. C. Bostock, L. Carter, and H. R. Grenfell (2012), Planktic foraminifera-based sea-surface temperature record in the Tasman Sea and history of the Subtropical Front around New Zealand, over the last one million years, Mar. Micropaleo., 82–83(0), 1327.
  • Hebbeln, D., F. Lamy, M. Mohtadi, and H. Echtler (2007), Tracing the impact of glacial-interglacial climate variability on erosion of the southern Andes, Geology, 35, 131134.
  • Herguera, J. C., T. D. Herbert, M. Kashgarian, and C. Charles (2010), Intermediate and deep water mass distribution in the Pacific during the Last Glacial Maximum inferred from oxygen and carbon stable isotopes, Quaternary Sci. Rev., 19, 12281245.
  • Ho, S. L., G. Mollenhauer, F. Lamy, A. Martínez-Garcia, M. Mohtadi, R. Gersonde, D. Hebbeln, S. Nuñez-Ricardo, A. Rosell-Melé, and R. Tiedemann (2012), Sea surface temperature variability in the Pacific sector of the Southern Ocean over the past 700 kyr, Paleoceanography, 27, PA4202, doi:10.1029/2012PA002317.
  • Hodell, D. A., C. D. Charles, and F. J. Sierro (2001), Late Pleistocene evolution of the ocean's carbonate system, Earth Planet. Sci. Lett., 192(2), 109124.
  • Hodell, D. A., K. Venz, C. D. Charles, and U. S. Ninnemann (2003), Pleistocene vertical carbon isotope and carbonate gradients in the South Atlantic sector of the Southern Ocean, Geochem. Geophys. Geosys., 4(1), 1004, doi:10.1029/2002GC000367.
  • Holbourn, A., W. Kuhnt, J. A. Simo, and Q. Li (2004), Middle Miocene isotope stratigraphy and paleoceanographic evolution of the northwest and southwest Australian margins (Wombat Plateau and Great Australian Bight), Palaeogeogr. Palaeoclim. Palaeoecol., 208(1–2), 122.
  • Hoogakker, B. A. A., E. J. Rohling, M. R. Palmer, T. Tyrrell, and R. G. Rothwell (2006), Underlying causes for long-term global ocean δ13C fluctuations over the last 1.20 Myr, Earth Planet. Sci. Lett., 248(1–2), 15.
  • Keeling, R. F., and B. B. Stephens (2001), Antarctic sea ice and the control of plesitocene climate instability, Paleoceanography, 16(1), 112131.
  • Keigwin, L. D. (1987), North Pacific deep water formation during the latest glaciation, Nature, 330, 362364.
  • Kohfeld, K. E., R. M. Graham, A. M. de Boer, L. C. Sime, E. W. Wolff, C. Le Quéré, and L. Bopp (2013), Southern Hemisphere westerly wind changes during the Last Glacial Maximum: Paleo-data synthesis, Quaternary Sci. Rev., 68, 7695.
  • Kroopnick, P. M. (1985), The distribution of 13C of ΣCO2 in the world oceans, Deep Sea Res. Oceanogr. Res. Paper., 32(1), 5784.
  • Kumamoto, Y., A. Murata, S. Watanabe, and M. Fukasawa (2011), Temporal and spatial variations in bomb-produced radiocarbon along BEAGLE2003 lines—Revisits of WHP P06, A10, and I03/I04 in the Southern Hemisphere Oceans, Prog. Oceanogr., 89(1–4), 4960.
  • Leth, O., G. Shaffer, and O. Ulloa (2004), Hydrography of the eastern South Pacific Ocean: Results from the Sonne 102 cruise, May–June 1995, Deep Sea Res. Topical Stud. Oceanogr., 51(20–21), 23492369.
  • Lisiecki, L. E. (2010), A simple mixing explanation for late Pleistocene changes in the Pacific-South Atlantic benthic δ13C gradient, Clim. Past, 6, 305314.
  • Lisiecki, L. E., and M. E. Raymo (2005), A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records, Paleoceanography, 20, PA1003, doi:10.1029/2004PA001071.
  • Llanillo, P. J., J. L. Pelegrí, C. M. Duarte, M. Emelianov, M. Gasser, J. Gourrion, and A. Rodríguez-Santana (2012), Meridional and zonal changes in water properties along the continental slope off central and northern Chile, Cienc. Mar., 38(1B), 307332.
  • Mackensen, A., H. W. Hubberten, T. Bickert, G. Fischer, and D. K. Fütterer (1993), The δ13C in benthic foraminiferal tests on Fontbotia wuellerstorfi (Schwager) relative to the δ13C of dissolved inorganic carbon in southern ocean deep water: Implications for glacial ocean circulation models, Paleoceanography, 8(5), 587610.
  • Makou, M. C., D. W. Oppo, and W. B. Curry (2010), South Atlantic intermediate water mass geometry for the last glacial maximum from foraminiferal Cd/Ca, Paleoceanography, 25, PA4101, doi:10.1029/2010PA001962.
  • Marchitto, T. M., J. L. Scott, J. D. Ortiz, J. Flückiger, and A. van Geen (2007), Marine radiocarbon evidence for the mechanism of deglacial atmospheric CO2 rise, Science, 316, 14561461.
  • McCartney, M. (1977), Subantarctic mode water, in A Voyage of Discovery, edited by M. Angel, pp. 103119, Pergamon Press, London.
  • Mohtadi, M., D. Hebbeln, S. Nuñez Ricardo, and C. B. Lange (2006), El Niño-like pattern in the Pacific during marine isotope stages (MIS) 13 and 11?, Paleoceanography, 21, PA1015, doi:10.1029/2005PA001190.
  • Mohtadi, M., P. Rossel, C. B. Lange, S. Pantoja, P. Böning, D. J. Repeta, M. Grunwald, F. Lamy, D. Hebbeln, and H.-J. Brumsack (2008), Deglacial pattern of circulation and marine productivity in the upwelling region off central-south Chile, Earth Planet. Sci. Lett., 272(1–2), 221230.
  • Molinelli, E. T. (1981), The Antarctic influence on Antractic Intermediate Water, J. Mar. Res., 39, 267293.
  • Mook, W. G., J. C. Bommerson, and W. H. Stoverman (1974), Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide, Earth Planet. Sci. Lett., 22, 69176.
  • Muratli, J. M., Z. Chase, A. C. Mix, and J. McManus (2010), Increased glacial-age ventilation of the Chilean margin by Antarctic Intermediate Water, Nat. Geosci., 3(1), 2326.
  • Pahnke, K., and R. Zahn (2005), Southern Hemisphere water mass conversion linked with North Atlantic climate variability, Science, 307, 1,741741,746.
  • Pahnke, K., S. L. Goldstein, and S. R. Hemming (2008), Abrupt changes in Antarctic Intermediate Water circulation over the past 25,000 years, Nat. Geosci., 1, 870874.
  • Rintoul, S. R. (1991), South Atlantic interbasin exchange, J. Geophys. Res., 96, 26752692.
  • Röhl, U., and L. J. Abrams (2000), High-resolution, down-hole and non-destructive core measurements from Sites 999 and 1001 in the Caribbean Sea: Application to the Late Paleocene Thermal Maximum, Proceedings of the Ocean Drilling Program (ODP), Scientific Results 165, 191–203, College Station, TX (Ocean Drilling Program).
  • Romero, O. E., J.-H. Kim, and D. Hebbeln (2006), Paleoproductivity evolution off central Chile from the Last Glacial Maximum to the Early Holocene, Quaternary Res., 65(3), 519525.
  • Rose, K. A., E. L. Sikes, T. P. Guilderson, P. Shane, T. M. Hill, R. Zahn, and H. J. Spero (2010), Upper-ocean-to-atmosphere radiocarbon offsets imply fast deglacial carbon dioxide release, Nature, 466, 10931097.
  • Sabine, C. L., et al. (2004), The oceanic sink for Anthropogenic CO2, Science, 305, 367371.
  • Saenko, O. A., A. J. Weaver, and J. M. Gregory (2003), On the link between the two modes of the ocean thermohaline circulation and the formation of global-scale water masses, J. Climate, 16(17), 2,797792,801.
  • Sallee, J.-B., R. J. Matear, S. R. Rintoul, and A. Lenton (2012), Localized subduction of anthropogenic carbon dioxide in the Southern Hemisphere oceans, Nat. Geosci., 5(8), 579584.
  • Schäfer, G., J. S. Rodger, B. W. Hayward, J. P. Kennett, A. T. Sabaa, and G. H. Scott (2005), Planktic foraminiferal and sea surface temperature record during the last 1 Myr across the Subtropical Front, Southwest Pacific, Mar. Micropaleo., 54(3–4), 191.
  • Schlitzer, R. (2012), Ocean Data View, http://odv.awi.de.
  • Schmidtko, S., and G. C. Johnson (2012), Multidecadal warming and shoaling of Antarctic Intermediate Water, J. Climate, 25, 207221.
  • Schneider, W., R. Fuenzalida, R. Nuñez, L. Bravo, and D. Figueroa (2007), Discussion of the Humboldt Current System and water masses in the North and Center off Chile, Cienc. Tecnol. Mar, 301, 2136.
  • Shaffer, G., S. Hormazabal, O. Pizarro, and M. Ramos (2004), Circulation and variability in the Chile Basin, Deep Sea Res.. Oceanogr. Res. Paper, 51(10), 13671386.
  • Sijp, W. P., and M. H. England (2009), Southern Hemisphere westerly wind control over the ocean's thermohaline circulation, J. Climate, 22, 12771286.
  • Silva, N., N. Rojas, and A. Fedele (2009), Water masses in the Humboldt Current System: Properties, distribution, and the nitrate deficit as a chemical water mass tracer for Equatorial Subsurface Water off Chile, Deep Sea Res. Topical Stud. Oceanogr., 56(16), 10041020.
  • Sloyan, B. M., and S. R. Rintoul (2001), Circulation, renewal, and modification of Antarctic Mode and Intermediate Water, J. Phys. Oceanogr., 31(4), 10051030.
  • Sortor, R. N., and D. C. Lund (2011), No evidence for a deglacial intermediate water Δ14C anomaly in the SW Atlantic, Earth Planet. Sci. Lett., 310(1–2), 6572.
  • Talley, L. D. (1999), Some aspects of ocean heat transport by the shallow, intermediate and deep overturning circulations, in Mechanisms of Global Climate Change at Millennial Time Scales, Geophys. Monogr. Ser., vol. 112, edited by U. Clark, S. Webb, and D. Keigwin, pp. 122, AGU, Washington, D. C., doi:10.1029/GM112p0001.
  • Talley, L. (2005), WOCE P19 vertical sections, http://www.word.ucsd.edu/whp_atlas//pacific/p19/sections/printatlas/printatlas.htm, http://cchdo.ucsd.edu/cruise/316N145_14.
  • Wainer, I., M. Goes, L. N. Murphy, and E. Brady (2012), Changes in the intermediate water mass formation rates in the global ocean for the Last Glacial Maximum, mid-Holocene and pre-industrial climates, Paleoceanography, 27, PA3101,doi:10.1029/2012PA002290.
  • Wong, A. P. S., N. L. Bindoff, and J. A. Church (1999), Large-scale freshening of intermediate waters in the Pacific and Indian oceans, Nature, 400, 440443.
  • Zahn, R., K. Winn, and M. Sarnthein (1986), Benthic foraminiferal δ13C and accumulation of organic carbon: Uvigerina perigerina and Cibicidoides wuellerstorfi, Paleoceanography, 1(1), 2742.