SEARCH

SEARCH BY CITATION

References

  • Ando, A., B. T. Huber, and K. G. MacLeod (2010), Depth-habitat reorganization of planktonic foraminifera across the Albian/Cenomanian boundary, Paleobiology, 36(3), 357373, doi:10.1666/09027.1.
  • Baker, P. A., J. M. Gieskes, and H. Elderfield (1982), Diagenesis of carbonates in deep-sea sediments—Evidence from Sr/Ca ratios and interstitial dissolved Sr2+ data, J. Sediment. Petrol., 52, 7182.
  • Barrera, E., B. T. Huber, S. M. Savin, and P.-N. Webb (1987), Antarctic marine temperatures: Late Campanian through early Paleocene, Paleoceanography, 2(1), 2147, doi:10.1029/PA002i001p00021.
  • Berggren, W. A., and R. D. Norris (1997), Biostratigraphy phylogeny and systematics of Paleocene trochospiral planktic foraminifera, Micropaleontology, 43, 1116.
  • Blow, W. H. (1979), The Cainozoic Globigerinida, E. J. Brill, Leiden.
  • Boussetta, S., F. Bassinot, A. Sabbatini, N. Caillon, J. Nouet, N. Kallel, H. Rebaubier, G. Klinkhammer, and L. Labeyrie (2011), Diagenetic Mg-rich calcite in Mediterranean sediments: Quantification and impact on foraminiferal Mg/Ca thermometry, Mar. Geol., 280(1–4), 195204, doi:10.1016/j.margeo.2010.12.011.
  • Bralower, T. J., and J. Mutterlose, (1995), Calcareous nannofossil biostratigraphy of Site 865, Allison Guyot, Central Pacific Ocean: A tropical Paleogene reference section, in Proceedings of the Ocean Drilling Program, Scientific Results, edited by E. L. Winterer et al., pp. 3174, Ocean Drilling Program, College Station, TX.
  • Bralower, T. J., J. C. Zachos, E. Thomas, M. Parrow, C. K. Paull, D. C. Kelly, I. P. Silva, W. V. Sliter, and K. C. Lohmann (1995), Late Paleocene to Eocene paleoceanography of the equatorial Pacific Ocean: Stable isotopes recorded at Ocean Drilling Program Site 865, Allison Guyot, Paleoceanography, 10(4), 841865.
  • Cavosie, A. J., J. W. Valley, S. A. Wilde, and E.I.M.F (2005), Magmatic δ18O in 4400–3900 Ma detrital zircons: A record of the alteration and recycling of crust in the Early Archean, Earth Planet. Sci. Lett., 235(3–4), 663681, doi:10.1016/j.epsl.2005.04.028.
  • Coplen, T. B., C. Kendall, and J. Hopple (1983), Comparison of stable isotope reference samples, Nature, 302, 236238.
  • Delaney, M. L. (1989), Temporal changes in interstitial water chemistry and calcite recrystallization in marine sediments, Earth Planet. Sci. Lett., 95, 2337.
  • D'Hondt, S., and M. A. Arthur (1996), Late Cretaceous oceans and the cool tropic paradox, Science, 271, 18381841.
  • Dickens, G. R. (2000), Methane oxidation during the late Palaeocene thermal maximum, Bull. Soc. Geol. Fr., 171(1), 3749.
  • Dickens, G. R., M. M. Castillo, and J. C. G. Walker (1997), A blast of gas in the latest Paleocene: Simulating first-order effects of massive dissociation of oceanic methane hydrate, Geology, 25(3), 259262, doi:10.1130/0091-7613(1997)025<0259:abogit>2.3.co;2.
  • Elderfield, H., and G. Ganssen (2000), Past temperature and δ18O of surface ocean waters inferred from foraminiferal Mg/Ca ratios, Nature, 405, 442445.
  • Erez, J. (2003), The source of ions for biomineralization in foraminifera and their implications for paleoceanographic proxies, Rev. Mineral. Geochem., 54, 115149.
  • Evans, D., and W. Müller (2012), Deep time foraminifera Mg/Ca paleothermometry: Nonlinear correction for secular change in seawater Mg/Ca, Paleoceanography, 27, PA4205, doi:10.1029/2012PA002315.
  • Katz, A. (1973), The interaction of magnesium with calcite during crystal growth at 25–90°C and one atmosphere, Geochim. Cosmochim. Acta, 37, 15631586.
  • Kelly, D. C., T. J. Bralower, J. C. Zachos, I. P. Silva, and E. Thomas (1996), Rapid diversification of planktonic foraminifera in the tropical Pacific (ODP Site 865) during the late Paleocene thermal maximum, Geology, 24(5), 423426.
  • Kelly, D. C., T. J. Bralower, and J. C. Zachos (1998), Evolutionary consequences of the latest Paleocene thermal maximum for tropical planktonic foraminifera, Palaeogeogr. Palaeoclimatol. Palaeoecol., 141, 139161.
  • Kelly, D. C., T. M. J. Nielsen, H. K. McCarren, J. C. Zachos, and U. Röhl (2010), Spatiotemporal patterns of carbonate sedimentation in the South Atlantic: Implications for carbon cycling during the Paleocene–Eocene thermal maximum, Palaeogeogr. Palaeoclimatol. Palaeoecol., 293(1–2), 3040, doi:10.1016/j.palaeo.2010.04.027.
  • Killingley, J. S. (1983), Effects of diagenetic recrystallization on 18O/16O values of deep-sea sediments, Nature, 301, 594597.
  • Kita, N. T., T. Ushikubo, B. Fu, and J. W. Valley (2009), High precision SIMS oxygen isotope analysis and the effect of sample topography, Chem. Geol., 264(1–4), 4357, doi:10.1016/j.chemgeo.2009.02.012.
  • Kozdon, R., T. Ushikubo, N. T. Kita, M. Spicuzza, and J. W. Valley (2009), Intratest oxygen isotope variability in the planktonic foraminifer N. pachyderma: Real vs. apparent vital effects by ion microprobe, Chem. Geol., 258, 327337, doi:10.1016/j.chemgeo.2008.10.032.
  • Kozdon, R., D. C. Kelly, N. T. Kita, J. H. Fournelle, and J. W. Valley (2011), Planktonic foraminiferal oxygen isotope analysis by ion microprobe technique suggests warm tropical sea surface temperatures during the Early Paleogene, Paleoceanography, 26, PA3206, doi:10.1029/2010PA002056.
  • Lea, D. W. (2003a), Elemental and isotopic proxies of past ocean temperatures, in Treatise on Geochemistry: The Oceans and Marine Geochemistry, edited by H. Elderfield, pp. 365390, Elsevier, New York.
  • Lea, D. W. (2003b), Trace elements in foraminiferal calcite, in Modern Foraminifera, edited by B. Sen Gupta, pp. 259277, Springer, Netherlands.
  • Matter, A., R. G. Douglas, and K. Perch-Nielsen (1975), Fossil preservation, geochemistry, and diagenesis of pelagic carbonates from Shatsky Rise, Northwest Pacific, in Initial Reports of the Deep Sea Drilling Project, edited by R. L. Larson and R. Moberly, pp. 891921, U.S. Government Printing Office, Washington D.C.
  • Matthews, R. K., and R. Z. Poore (1980), Tertiary δ18O record and glacio-eustatic sea-level fluctuations, Geology, 8(10), 501504, doi:10.1130/0091-7613(1980)8<501:torags>2.0.co;2.
  • Milliman, J. D., and J. Müller (1973), Precipitation and lithification of magnesian calcite in the deep-sea sediments of the eastern Mediterranean Sea, Sedimentology, 20(1), 2945, doi:10.1111/j.1365-3091.1973.tb01605.x.
  • Morse, J. W., and M. L. Bender (1990), Partition coefficients in calcite: Examination of factors influencing the validity of experimental results and their application to natural systems, Chem. Geol., 82, 265277, doi:10.1016/0009-2541(90)90085-l.
  • Mucci, A. (1987), Influence of temperature on the composition of magnesian calcite overgrowth precipitated from seawater, Geochim. Cosmochim. Acta, 51, 19771984.
  • Norris, R. D., and P. A. Wilson (1998), Low-latitude sea-surface temperatures for the mid-Cretaceous and the evolution of planktic foraminifera, Geology, 26(9), 823826.
  • Olsson, R. K., W. A. Berggren, C. Hemleben, and B. T. Huber (1999), Atlas of Paleocene Planktonic Foraminifera, 252 pp., Smithsonian Institution Press, Washington, D.C.
  • Oomori, T., H. Kaneshima, Y. Maezato, and Y. Kitano (1987), Distribution coefficient of Mg2+ ions between calcite and solution at 10–50°C, Mar. Chem., 20, 327336.
  • Paull, C. K., P. D. Fullagar, T. J. Bralower, and U. Röhl (1995), Seawater ventilation of Mid-Pacific guyots drilled during Leg 143, in Proceedings of the Ocean Drilling Program, Scientific Results, edited by E. L. Winterer et al., pp. 231241, Ocean Drilling Program, College Station, TX.
  • Pearson, P. N. (2012), Oxygen isotopes in foraminifera: Overview and historical review, in Reconstructing the Earth's Deep-Time Climate—The State of the Art in 2012, edited by L. C. Ivany and B. T. Huber, pp. 138, The Paleontological Society, Cardiff, U.K.
  • Pearson, P. N., and C. E. Burgess (2008), Foraminifer test preservation and diagenesis: Comparison of high latitude Eocene sites, in Biogeochemical Controls on Palaeoceanographic Environmental Proxies, edited by W. E. N. Austin and R. H. James, pp. 5972, Geological Society, London, Special Publications.
  • Pearson, P. N., P. W. Ditchfield, J. Singano, K. G. Harcourt-Brown, C. J. Nicholas, R. K. Olsson, N. J. Shackleton, and M. Hall (2001), Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs, Nature, 413, 481487.
  • Pearson, P. N., R. K. Olsson, C. Hemleben, B. T. Huber, and W. A. Berggren (2006), Atlas of Eocene Planktonic Foraminifera, pp. 513, Cushman Foundation Special Publication, Lawrence, Kansas.
  • Pearson, P. N., B. E. van Dongen, C. J. Nicholas, R. D. Pancost, S. Schouten, J. M. Singano, and B. S. Wade (2007), Stable warm tropical climate through the Eocene epoch, Geology, 35(3), 211214.
  • Sager, W. W., E. L. Winterer, and J. V. Firth (1993), Proceedings of the Ocean Drilling Program. Initial Report 143.
  • Schrag, D. P. (1999), Effects of diagenesis on the isotopic record of late Paleogene tropical sea surface temperatures, Chem. Geol., 161(1–3), 215224, doi:10.1016/s0009-2541(99)00088-1.
  • Schrag, D. P., D. J. DePaolo, and F. M. Richter (1992), Oxygen isotope exchange in a two-layer model of oceanic crust, Earth Planet. Sci. Lett., 111, 305317.
  • Schrag, D. P., D. J. DePaolo, and F. M. Richter (1995), Reconstructing past sea surface temperatures: Correcting for diagenesis of bulk marine carbonate, Geochim. Cosmochim. Acta, 59, 22652278.
  • Sexton, P. F., P. A. Wilson, and P. N. Pearson (2006), Microstructural and geochemical perspectives on planktic foraminiferal preservation: “Glassy” versus “frosty”, Geochem. Geophys. Geosyst., 7, Q12P19, doi:10.1029/2006GC001291.
  • Tripati, A., and H. Elderfield (2005), Deep-sea temperature and circulation changes at the Paleocene-Eocene thermal maximum, Science, 308, 18941898.
  • Tripati, A. K., M. L. Delaney, J. C. Zachos, L. D. Anderson, D. C. Kelly, and H. Elderfield (2003), Tropical sea-surface temperature reconstruction for the early Paleogene using Mg/Ca ratios of planktonic foraminifera, Paleoceanography, 18(4), 1101, doi:10.1029/2003PA000937.
  • Valley, J. W., and N. T. Kita (2009), In situ oxygen isotope geochemistry by ion microprobe, in MAC Short Course: Secondary Ion Mass Spectrometry in the Earth Sciences, edited by M. Fayek, pp. 1663, Mineralogical Association of Canada Short Course 41, Toronto.
  • Vetter, L., R. Kozdon, C. I. Mora, S. M. Eggins, J. W. Valley, B. Hönisch, and H. J. Spero (2013), Micron-scale intrashell oxygen isotope variation in cultured planktic foraminifers, Geochim. Cosmochim. Acta, 107(0), 267278, doi:10.1016/j.gca.2012.12.046.
  • Walker, J. C. G., and J. F. Kasting (1992), Effects of fuel and forest conservation on future levels of atmospheric carbon dioxide, Palaeogeogr. Palaeoclimatol. Palaeoecol., 97(3), 151189, doi:10.1016/0031-0182(92)90207-l.
  • Wilkinson, B. H., and T. J. Algeo (1989), Sedimentary carbonate record of Ca-Mg cycling at the Earth's surface, Am. J. Sci., 289, 11581194.
  • Wilson, P. A., and R. D. Norris (2001), Warm tropical ocean surface and global anoxia during the mid-Cretaceous period, Nature, 412(6845), 425429.
  • Wilson, P. A., R. D. Norris, and M. J. Cooper (2002), Testing the Cretaceous greenhouse hypothesis using glassy foraminiferal calcite from the core of the Turonian tropics on Demerara Rise, Geology, 30(7), 607610.
  • Wise, S. W. (1977), Chalk formation: Early diagenesis, in The Fate of Fossil Fuel CO2 in the Oceans, edited by R. N. Anderson and A. Malahoff, pp. 717739, Plenum Press, New York.
  • Zachos, J. C., M. Pagani, L. Sloan, E. Thomas, and K. Billups (2001), Trends, rhythms, and aberrations in global climate 65 Ma to present, Science, 292, 686693, doi:10.1126/science.1059412.
  • Zachos, J. C., et al. (2005), Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum, Science, 308(5728), 16111615, doi:10.1126/science.1109004.
  • Zachos, J. C., S. Schouten, S. Bohaty, T. Quattlebaum, A. Sluijs, H. Brinkhuis, S. J. Gibbs, and T. J. Bralower (2006), Extreme warming of mid-latitude coastal ocean during the Paleocene-Eocene thermal maximum: Inferences from TEX86 and isotope data, Geology, 34(9), 737740, doi:10.1130/G22522.1.