SEARCH

SEARCH BY CITATION

References

  • Arsouze, T., J.-C. Dutay, F. Lacan, and C. Jeandel (2009), Reconstructing the Nd oceanic cycle using a coupled dynamical–biogeochemical model, Biogeosci. Discuss., 6, 55495588.
  • Arthur, M. A., and A. G. Fischer (1977), Upper Cretaceous–Paleocene magnetic stratigraphy at Gubbio, Italy I. Lithostratigraphy and sedimentology, Geol. Soc. Am. Bull., 88, 367371.
  • Barrat, J. A., F. Keller, and J. Amossé (1996), Determination of rare earth elements in sixteen silicate reference samples by ICP-MS after Tm addition and ion exchange separation, Geostand. Newsl., 20, 133139.
  • Barrera, E. (1994), Global environmental changes preceding the Cretaceous-Tertiary boundary: Early–Late Maastrichtian transition, Geology, 22, 877880.
  • Barrera, E., and S. M. Savin (1999), Evolution of late Campanian-Maastrichtian marine climates and oceans, in Evolution of the Cretaceous Ocean-Climate System, vol. 332, edited by E. J. Barrera and C. C. Johnson, pp. 245282, Special Paper Geological Society of America, Boulder, Colo.
  • Barrera, E., S. M. Savin, E. Thomas, and C. E. Jones (1997), Evidence for thermohaline-circulation reversals controlled by sea-level change in the latest Cretaceous, Geology, 25, 715718.
  • Bayon, G., C. R. German, R. M. Boella, J. A. Milton, R. N. Taylor, and R. W. Nesbitt (2002), An improved method for extracting marine sediment fractions and its application to Sr and Nd isotopic analysis, Chem. Geol., 187, 179199.
  • Bralower, T. J., et al. (2002a), Site 1210B Shatsky Rise, ODP Leg 198, Proc. Ocean Drill. Program: Initial Rep., 198, 189.
  • Bralower, T. J., et al. (2002b), Leg 198 summary, Proc. Ocean Drill. Program: Initial Rep., 198, 148.
  • Coffin, M. F., M. S. Pringle, R. A. Duncan, T. P. Gladczenko, M. Storey, R. D. Müller, and L. A. Gahagan (2002), Kerguelen hotspot magma output since 130 Ma, J. Petrol., 43, 11211139.
  • Cohen, A. S., R. K. O'Nions, R. Siegenthaler, and W. L. Griffin (1988), Chronology of the pressure-temperature history recorded by a granulite terrain, Contrib.Mineral. Petrol., 98, 303311.
  • DePaolo, D. J., and G. J. Wasserburg (1976), Nd isotopic variations and petrogenetic models, Geophys. Res. Lett., 3, 249252.
  • D'Hondt, S., and M. A. Arthur (2002), Deep water in the late Maastrichtian ocean, Paleoceanography, 17(1), 1008, doi:10.1029/1999PA000486.
  • D'Hondt, S., and M. Lindinger (1994), A stable isotopic record of the Maastrichtian ocean-climate system: South Atlantic DSDP site 528, Palaeogeogr. Palaeoclimatol. Palaeoecol., 112, 363378.
  • Forster, A., S. Schouten, M. Baas, and J. S. S. Damste (2007), Mid-Cretaceous (Albian-Santonian) sea surface temperature record of the tropical Atlantic Ocean, Geology, 35, 919922.
  • Frank, T. D., and M. A. Arthur (1999), Tectonic forcings of Maastrichtian ocean-climate evolution, Paleoceanography, 14, 103117.
  • Frank, M., N. Whiteley, S. Kasten, J. R. Hein, and K. O'Nions (2002), North Atlantic deep water export to the Southern Ocean over the past 14 Myr: Evidence from Nd and Pb isotopes in ferromanganese crusts, Paleoceanography, 17(2), 1022, doi:10.1029/2000PA000606.
  • Frank, T. D., D. J. Thomas, R. M. Leckie, M. A. Arthur, P. R. Bown, K. Jones, and J. A. Lees (2005), The Maastrichtian record from Shatsky Rise (northwest Pacific): A tropical perspective on global ecological and oceanographic changes, Paleoceanography, 20, PA1008, doi:10.1029/2004PA001052.
  • Frey, F. A., et al. (2000), Origin and evolution of a submarine large igneous province: The Kerguelen Plateau and Broken Ridge, southern Indian Ocean, Earth Planet. Sci. Lett., 176, 7389.
  • Friedrich, O., J. O. Herrle, P. Kößler, and C. Hemleben (2004), Early Maastrichtian stable isotopes: Changing deep water sources in the North Atlantic?, Palaeogeogr. Palaeoclimatol. Palaeoecol., 211, 171184.
  • Friedrich, O., J. O. Herrle, P. A. Wilson, M. J. Cooper, J. Erbacher, and C. Hemleben (2009), Early Maastrichtian carbon cycle perturbation and cooling event: Implications from the South Atlantic Ocean, Paleoceanography, 24, PA2211, doi:10.1029/2008PA001654.
  • Friedrich, O., R. D. Norris, and J. Erbacher (2012), Evolution of middle to Late Cretaceous oceans—A 55 m.y. record of Earth's temperature and carbon cycle, Geology, 40, 107110.
  • Gardin, S., B. Galbrun, N. Thibault, R. Coccioni, and I. Premoli Silva (2012), Bio-magnetochronology for the upper Campanian-Maastrichtian from the Gubbio area, Italy: New results from the Contessa Highway and Bottaccione sections, Newsl. Stratigr., 45(1), 75103.
  • Goldstein, S. L., and S. H. Hemming (2003), Long-lived isotopic tracers in oceanography, paleoceanography, and ice sheet dynamics, in Treatise on Geochemistry, vol. 17, edited by H. Elderfield, pp. 453489, Elsevier, New York.
  • Goldstein, S. J., and S. B. Jacobsen (1987), Nd and Sr isotopic systematics of river water suspended material: Implications for crustal evolution, Earth Planet. Sci. Lett., 87, 249265.
  • Grasse, P., T. Stichel, R. Stumpf, L. Stramma, and M. Frank (2012), The distribution of neodymium isotopes and concentrations in the eastern equatorial Pacific: Water mass advection versus particle exchange, Earth Planet. Sci. Lett., 353-354, 198207.
  • Gutjahr, M., M. Frank, C. H. Stirling, V. Klemm, T. van de Flierdt, and A. N. Halliday (2007), Reliable extraction of a deepwater trace metal isotope signal from Fe–Mn oxyhydroxide coatings of marine sediments, Chem. Geol., 242, 351370.
  • Hague, A. M., D. J. Thomas, M. Huber, R. Korty, S. C. Woodard, and L. B. Jones (2012), Convection of North Pacific deep water during the early Cenozoic, Geology, 40, 527530.
  • Haq, B., J. Hardenbol, and P. R. Vail (1987), Chronology of fluctuating sea levels since the Triassic, Science, 235, 11561167.
  • Hay, W. W., R. M. DeConto, C. N. Wold, K. M. Wilson, S. Voigt, M. Schulz, A. Rossby-Wold, W.-C. Dullo, A. B. Ronov, and A. Balukhovsky (1999), Alternative global Cretaceous paleogeography, in Evolution of the Cretaceous Ocean-Climate System, vol. 332, edited by E. Barrera and C. C. Johnson, pp. 147, Special Paper Geological Society of America, Boulder.
  • Horikawa, K., E. E. Martin, Y. Asahara, and T. Sagawa (2011), Limits on conservative behavior of Nd isotopes in seawater assessed from analysis of fish teeth from Pacific core tops, Earth Planet. Sci. Lett., 310, 119130.
  • Horwitz, P. E., R. Chiarizia, and M. L. Dietz (1992), A novel strontium-selective extraction chromatographic resin*, Solvent Extr. Ion Exch., 10, 313336.
  • Huber, B. T., R. D. Norris, and K. G. MacLeod (2002), Deep-sea paleotemperature record of extreme warmth during the Cretaceous, Geology, 30, 123126.
  • Jacobsen, S. B., and G. J. Wasserburg (1980), Sm-Nd isotopic evolution of chondrites, Earth Planet. Sci. Lett., 50, 139155.
  • Jarvis, I., A. Mabrouk, R. T. J. Moody, and S. de Cabrera (2002), Late Cretaceous (Campanian) carbon isotope events, sea-level change and correlation of the Tethyan and Boreal realms, Palaeogeogr. Palaeoclimatol. Palaeoecol., 188, 215248.
  • Jarvis, I., A. S. Gale, H. C. Jenkyns, and M. A. Pearce (2006), Secular variation in Late Cretaceous carbon isotopes: A new δ13C carbonate reference curve for the Cenomanian–Campanian (99.6–70.6 Ma), Geol. Mag., 143, 561608.
  • Jeandel, C., T. Arsouze, F. Lacan, P. Téchiné, and J.-C. Dutay (2007), Isotopic Nd compositions and concentrations of the lithogenic inputs into the ocean: A compilation, with an emphasis on the margins, Chem. Geol., 239, 156164.
  • Jenkyns, H. C., A. S. Gale, and R. M. Corfield (1994), Carbon-isotope and oxygen-isotope stratigraphy of the English Chalk and Italian Scaglia and its palaeoclimatic significance, Geol. Mag., 131, 134.
  • Jiménez Berrocoso, Á., K. G. MacLeod, B. T. Huber, J. A. Lees, I. Wendler, P. R. Bown, A. K. Mweneinda, C. Isaza Londoño, and J. M. Singano (2010), Lithostratigraphy, biostratigraphy and chemostratigraphy of Upper Cretaceous sediments from southern Tanzania: Tanzania drilling project sites 21-26, J. Afr. Earth Sci., 57, 4769.
  • Jiménez Berrocoso, À., et al. (2012), Lithostratigraphy, biostratigraphy and chemostratigraphy of Upper Cretaceous and Paleogene sediments from southern Tanzania: Tanzania Drilling Project Sites 27–35, J. Afr. Earth Sci., 70, 3657.
  • Jung, C., S. Voigt, and O. Friedrich (2012), High-resolution carbon-isotope stratigraphy across the Campanian–Maastrichtian boundary at Shatsky Rise (tropical Pacific), Cretaceous Res., 37, 177185.
  • Kaiho, K. (1999), Evolution in the test size of deep-sea benthic foraminifera during the past 120 m.y, Mar. Micropaleontol., 37, 5365.
  • Kamenkovich, I., J. Marotzke, and P. H. Stone (2000), Factors affecting heat transport in an ocean general circulation model, J. Phys. Oceanogr., 30, 175194.
  • Koch, M. C., and O. Friedrich (2012), Campanian-Maastrichtian intermediate- to deep-water changes in the high latitudes: Benthic foraminiferal evidence, Paleoceanography, 27, PA2209, doi:10.1029/2011PA002259.
  • Kuiper, K. F., A. Deino, F. J. Hilgen, W. Krijgsman, P. R. Renne, and J. R. Wijbrans (2008), Synchronizing rock clocks of earth history, Science, 320, 500504.
  • Lacan, F., and C. Jeandel (2005), Neodymium isotopes as a new tool for quantifying exchange fluxes at the continent–ocean interface, Earth Planet. Sci. Lett., 232, 245257.
  • Larson, R. L., and W. C. Pitman (1972), World-wide correlation of Mesozoic magnetic anomalies, and its implications, Geol. Soc. Am. Bull., 83, 36453662.
  • Larson, R. L., M. B. Steiner, E. Erba, and Y. Lancelot (1992), Proceedings of the Ocean Drilling Program, Scientific Results, vol. 129, edited by R. L. Larson et al., pp. 615631, Ocean Drilling Program, College Station, TX.
  • Le Fèvre, B., and C. Pin (2005), A straightforward separation scheme for concomitant Lu-Hf and Sm-Nd isotope ratio and isotope dilution analysis, Anal. Chim. Acta, 543, 209221.
  • Le Houedec, S., L. Meynadier, J.-P. Cogné, C. J. Allègre, and A. T. Gourlan (2012), Oceanwide imprint of large tectonic and oceanic events on seawater Nd isotope composition in the Indian Ocean from 90 to 40 Ma, Geochem. Geophys. Geosyst., 13, Q06008, doi:10.1029/2011GC003963.
  • Lees, J. A., and P. R. Bown (2005), Upper Cretaceous calcareous nannofossil biostratigraphy, ODP Leg 198 (Shatsky Rise, northwest Pacific Ocean), in Proceedings of the Ocean Drilling Program, Scientific Results, edited by T. J. Bralower, I. Premoli Silva, and M. J. Malone, pp. 160, Ocean Drilling Program, College Station, TX.
  • Li, L., and G. Keller (1998), Maastrichtian climate, productivity and fauna1 turnovers in planktic foraminifera in South Atlantic DSDP sites 525A and 21, Mar. Micropaleontol., 33, 5586.
  • Li, L., and G. Keller (1999), Variability in Late Cretaceous climate and deep waters: Evidence from stable isotopes, Mar. Geol., 161, 171190.
  • Li, L. Q., G. Keller, T. Adatte, and W. Stinnesbeck (2000), Late Cretaceous sea-level changes in Tunisia: A multi-disciplinary approach, J. Geol. Soc., 157, 447458.
  • MacLeod, K. G., B. T. Huber, and P. D. Ward (1996), The biostratigraphy and paleobiogeography of Maastrichtian inoceramids, in Special Paper, 307: The Cretaceous-Tertiary Event and Other Catastophes in Earth History, edited by G. Ryder, D. Fastovsky, and S. Gartner, pp. 361373, Geological Society of America, Boulder.
  • MacLeod, K. G., E. E. Martin, and S. W. Blair (2008), Nd isotopic excursion across Cretaceous ocean anoxic event 2 (Cenomanian-Turonian) in the tropical North Atlantic, Geology, 36, 811814.
  • MacLeod, K. G., C. I. Londono, E. E. Martin, A. J. Berrocoso, and C. Basak (2011), Changes in North Atlantic circulation at the end of the Cretaceous greenhouse interval, Nat. Geosci., 4, 779782.
  • Martin, E. E., S. W. Blair, G. D. Kamenov, H. D. Scher, E. Bourbon, C. Basak, and D. N. Newkirk (2010), Extraction of Nd isotopes from bulk deep sea sediments for paleoceanographic studies on Cenozoic time scales, Chem. Geol., 269, 414431.
  • Martin, E. E., K. G. MacLeod, A. Jiménez Berrocoso, and E. Bourbon (2012), Water mass circulation on Demerara Rise during the Late Cretaceous based on Nd isotopes, Earth Planet. Sci. Lett., 327–328, 111120.
  • McArthur, J. M., R. J. Howarth, and G. A. Shields (2012), Strontium isotope stratigraphy, in The Geologic Time Scale 2012, vol. 1, edited by F. M. Gradstein, pp. 127144, Cambridge Univ. Press, Cambridge.
  • Miller, K. G., E. Barrera, R. K. Olsson, P. J. Sugarman, and S. M. Savin (1999), Does ice drive early Maastrichtian eustasy?, Geology, 27, 783786.
  • Miller, K. G., P. J. Sugarman, J. V. Browning, M. A. Kominz, J. C. Hernández, R. K. Olsson, J. D. Wright, M. D. Feigenson, and W. Van Sickel (2003), Late Cretaceous chronology of large, rapid sea-level changes: Glacioeustasy during the greenhouse world, Geology, 31, 585588.
  • Miller, K. G., J. D. Wright, and J. V. Browning (2005), Visions of ice sheets in a greenhouse world, Mar. Geol., 217, 215231.
  • Müller, R. D., M. Sdrolias, C. Gaina, and W. R. Roest (2008a), Age, spreading rates, and spreading asymmetry of the world's ocean crust, Geochem. Geophys. Geosyst., 9, Q04006, doi:10.1029/2007GC001743.
  • Müller, R. D., M. Sdrolias, C. Gaina, B. Steinberger, and C. Heine (2008b), Long-term sea-level fluctuations driven by ocean basin dynamics, Science, 319, 13571362.
  • Murphy, D. P., and D. J. Thomas (2012), Cretaceous deep-water formation in the Indian sector of the Southern Ocean, Paleoceanography, 27, PA1211, doi:10.1029/2011PA002198.
  • Nakanishi, M., K. Tamaki, and K. Kobayashi (1989), Mesozoic magnetic anomaly lineations and seafloor spreading history of the northwestern Pacific, J. Geophys. Res., 94, 437462.
  • Odin, G. S., and M. A. Lamaurelle (2001), The global Campanian-Maastrichtian stage boundary, Episodes, 24, 229238.
  • Paull, C. K., S. J. Hills, and H. R. Thierstein (1988), Progressive dissolution of fine carbonate particles in pelagic sediments, Mar. Geol., 81, 2740.
  • Petrizzo, M. R., F. Falzoni, and I. Premoli Silva (2011), Identification of the base of the lower-to-middle Campanian Globotruncana ventricosa zone: Comments on reliability and global correlations, Cretaceous Res., 32, 387405.
  • Piotrowski, A. M., A. Galy, J. A. L. Nicholl, N. Roberts, D. J. Wilson, J. A. Clegg, and J. Yu (2012), Reconstructing deglacial North and South Atlantic deep water sourcing using foraminiferal Nd isotopes, Earth Planet. Sci. Lett., 357-358, 289297.
  • Premoli Silva, I., and W. Sliter (1995), Cretaceous planktonic foraminiferal biostratigraphy and evolutionary trends from the Bottaccione section Gubbio, Italy, Palaeontographia Italica, 82, 189.
  • Pucéat, E., C. Lécuyer, and L. Reisberg (2005), Neodymium isotope evolution of NW Tethyan upper ocean waters throughout the Cretaceous, Earth Planet. Sci. Lett., 236, 705720.
  • Robinson, S. A., and D. Vance (2012), Widespread and synchronous change in deep-ocean circulation in the North and South Atlantic during the Late Cretaceous, Paleoceanography, 27, PA1102, doi:10.1029/2011PA002240.
  • Robinson, S. A., D. P. Murphy, D. Vance, and D. J. Thomas (2010), Formation of “Southern Component Water” in the Late Cretaceous: Evidence from Nd-isotopes, Geology, 38, 871874.
  • Roy, M., T. van de Flierdt, S. R. Hemming, and S. L. Goldstein (2007), 40Ar/39Ar ages of hornblende grains and bulk Sm/Nd isotopes of circum-Antarctic glacio-marine sediments: Implications for sediment provenance in the southern ocean, Chem. Geol., 244, 507519.
  • Siddall, M., S. Khatiwala, T. van de Flierdt, K. M. Jones, S. L. Goldstein, S. R. Hemming, and R. F. Anderson (2008), Towards explaining the Nd paradox using reversible scavenging in an ocean general circulation model, Earth Planet. Sci. Lett., 274, 448461.
  • Soudry, D., C. R. Glenn, Y. Nathan, I. Segal, and D. VonderHaar (2006), Evolution of Tethyan phosphogenesis along the northern edges of the Arabian-African shield during the Cretaceous-Eocene as deduced from temporal variations of Ca and Nd isotopes and rates of P accumulation, Earth Sci. Rev., 78, 2757.
  • Stumpf, R., M. Frank, J. Schönfeld, and B. A. Haley (2010), Late Quaternary variability of Mediterranean outflow water from radiogenic Nd and Pb isotopes, Quat. Sci. Rev., 29, 24622472.
  • Tachikawa, K., C. Jeandel, and M. Roy-Barman (1999), A new approach to the Nd residence time in the ocean: The role of atmospheric inputs, Earth Planet. Sci. Lett., 170, 433446.
  • Tanaka, T., et al. (2000), JNdi-1: A neodymium isotopic reference in consistency with LaJolla neodymium, Chem. Geol., 168, 279281.
  • Thibault, N., D. Husson, R. Harlou, S. Gardin, B. Galbrun, E. Huret, and F. Minoletti (2012a), Astronomical calibration of upper Campanian–Maastrichtian carbon isotope events and calcareous plankton biostratigraphy in the Indian Ocean (ODP Hole 762C): Implication for the age of the Campanian–Maastrichtian boundary, Palaeogeogr. Palaeoclimatol. Palaeoecol., 337-338, 5271.
  • Thibault, N., R. Harlou, N. Schovsbo, P. Schioler, B. W. Lauridsen, E. Sheldon, L. Stemmerik, and F. Surlyk (2012b), Upper Campanian–Maastrichtian carbon-isotope stratigraphy of the Danish Basin: Calibration with calcareous nannofossil and dinoflagellate events in the Boreal Realm, Cretaceous Res., 33, 7290.
  • Thomas, D. J. (2004), Evidence for deep-water production in the North Pacific Ocean during the early Cenozoic warm interval, Nature, 430, 6568.
  • Thomas, D. J., T. J. Bralower, and C. E. Jones (2003), Neodymium isotopic reconstruction of late Paleocene-early Eocene thermohaline circulation, Earth Planet. Sci. Lett., 209, 309322.
  • Voigt, S., O. Friedrich, R. D. Norris, and J. Schönfeld (2010), Campanian–Maastrichtian carbon isotope stratigraphy: Shelf-ocean correlation between the European shelf sea and the tropical Pacific Ocean, Newsl. Stratigr., 44, 5772.
  • Voigt, S., A. S. Gale, C. Jung, and H. C. Jenkyns (2012), Global correlation of Upper Campanian-Maastrichtian successions using carbon-isotope stratigraphy: Development of a new Maastrichtian timescale, Newsl. Stratigr., 45, 2553.
  • Voigt, S., C. Jung, O. Friedrich, M. Frank, C. Teschner, and J. Hoffmann (2013), Tectonically restricted deep-ocean circulation at the end of the Cretaceous greenhouse, Earth Planet. Sci. Lett., 369-370, 169177.
  • Wilson, D. J., A. M. Piotrowski, A. Galy, and J. A. Clegg (2013), Reactivity of neodymium carriers in deep sea sediments: Implications for boundary exchange and paleoceanography, Geochim. Cosmochim. Acta, 109, 197221.
  • Zachos, J., M. Pagani, L. Sloan, E. Thomas, and K. Billups (2001), Trends, rhythms, and aberrations in global climate 65 Ma to present, Science, 292, 686693.