SEARCH

SEARCH BY CITATION

References

  • [1]
    H. W. ALT, AND S. LUCKHAUS, Quasilinear elliptic–parabolic differential equations, Math. Z. 183, pp. 311–341 (1983).
  • [2]
    T. ARBOGAST, M. OBEYESEKERE, AND M. F. WHEELER, Numerical methods for the simulation of flow in root–soil systems, SIAM J. Numer. Anal. 30, pp. 1677–1702 (1993).
  • [3]
    T. ARBOGAST, M. F. WHEELER, AND N. Y. ZHANG, A nonlinear mixed finite element method for a degenerate parabolic equation arising in flow in porous media, SIAM J. Numer. Anal. 33, pp. 1669–1687 (1996).
  • [4]
    W. J¨AGER, AND J. KACUR, Solution of doubly nonlinear and degenerate parabolic problems by relaxation schemes, M2AN Math. Model. Numer. Anal. 29, pp. 605–627 (1995).
  • [5]
    E.J. PARK, Mixed finite elements for nonlinear second–order elliptic problems, SIAM J. Numer. Anal. 32, pp. 865–885 (1995).
  • [6]
    I. S. POP, F. A. RADU, AND P. KNABNER, Mixed finite elements for the Richard' equation: linearization procedure, J. Comput. and Appl. Math. 168, pp. 365–373 (2004).
  • [7]
    F. A. RADU, I. S. POP, AND P. KNABNER, Order of convergence estimates for an Euler implicit, mixed finite element discretization of Richard' equation, SIAM J. Numer. Anal. 42, pp. 1452–1478 (2004).
  • [8]
    F. A. RADU, I. S. POP, AND P. KNABNER, On the convergence of the Newton method for the mixed finite element discretization of a class of degenerate parabolic equation, Numerical Mathematics and Advanced Applications, Springer, pp. 1194–1200 (2006).
  • [9]
    F. A. RADU, I. S. POP, AND P. KNABNER, Error estimates for a mixed finite element discretization of some degenerate parabolic equations, Numer. Math. 109 (2), pp. 285–311 (2008).
  • [10]
    E. SCHNEID, P. KNABNER, AND F. A. RADU, A priori error estimates for a mixed finite element discretization of the Richard' equation, Num. Math. 98, pp. 353–370 (2004).