SEARCH

SEARCH BY CITATION

References

  • [1]
    H. H. Albrecht, A family of cosine–sum windows for high resolution measurements, in: IEEE International Conference on Acoustics, Speech and Signal Processing, Salt Lake City, Mai 2001, (Salt Lake City, 2001), pp. 3081—3084.
  • [2]
    R. B. Blackman, and J. W. Tukey, The measurement of power spectra, (Dover, New York, 1958).
  • [3]
    P. L. Butzer, G. Schmeisser, and R. L. Stens, An introduction to sampling analysis, in: Nonuniform Sampling, Theory and Practice, edited by F. Marvasti, (Kluwer, New York, 2001), pp. 17–121.
  • [4]
    P. L. Butzer, W. Splettstößer, and R. L. Stens, The sampling theorems and linear prediction in signal analysis, Jahresber. Deutsch. Math–Verein, 90, 1–70, (1988).
  • [5]
    J. R. Higgins, Sampling Theory in Fourier and Signal Analysis, (Clarendon Press, Oxford, 1996).
  • [6]
    A. Kivinukk, Approximation by typical sampling series, in: Proc. 1999 Intern. Workshop on Sampling Theory and Applications, Loen, Norway. Norwegian Univ. Sci. and Technology, 1999, 161–166.
  • [7]
    A. Kivinukk, and G. Tamberg, On sampling operators defined by the Hann window and some of their extensions, Sampling Theory in Signal and Image Processing, 2, 235–258, (2003).
  • [8]
    A. Kivinukk, and G. Tamberg, On Blackman–Harris Windows for Shannon Sampling Series, Sampling Theory in Signal and Image Processing, 6, 87–108, (2007).
  • [9]
    A. Kivinukk, and G. Tamberg, Shannon sampling series with averaged kernels, in: Proceedings of SAMPTA 2007 june 1 – 5, 2007, Thessaloniki, Greece
  • [10]
    A. Kivinukk, and G. Tamberg, Interpolating Generalized Shannon Sampling Series, Sampling Theory in Signal and Image Processing (submitted)
  • [11]
    R. L. Stens, Sampling with generalized kernels, in: Sampling Theory in Fourier and Signal Analysis: Advanced Topics, edited by J.R. Higgins and R.L. Stens, (Clarendon Press, Oxford, 1999).
  • [12]
    G. Tamberg, Approximation by the Blackman–type sampling series, in: Proc. of the Intern. Workshop on Sampling Theory and Applications (SampTA'03), Strobl, Salzburg, Austria, May 26–31, 2003 pp. 90–94.
  • [13]
    M. Theis, Über eine Interpolationsformel von de la Vallee–Poussin, Math. Z. 3, 93–113, (1919).
  • [14]
    K. Turkowski, Filters for common resampling tasks, in: Graphics Gems I, edited by A. S. Glassner, (Academic Press, 1990), pp. 147–165.