Dynamic crack analysis in 2D elastic solids with the singular edge-based smoothed finite element method



The singular edge-based smoothed finite element method (sES-FEM) is developed for stationary dynamic crack analysis in two-dimensional (2D) elastic solids. The paper aims at providing a better understanding of the dynamic fracture behaviors in linear elastic solids by means of the strain smoothing technique. The strains are smoothed and the system stiffness matrix is performed using the strain smoothing over the smoothing domains associated with the element edges. A two-layer singular five-node crack-tip element is employed while the standard implicit time integration scheme is used for solving the discrete sES-FEM equation system. Dynamic stress intensity factors (DSIFs) are extracted using the domain-form of interaction integrals in terms of the smoothing technique. The normalized DSIFs are compared with reference solutions showing a high accuracy of the sES-FEM. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)