SEARCH

SEARCH BY CITATION

References

  • [1]
    S.M. Allen, J.W. Cahn. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metal. 27, 1085–1095 (1979)
  • [2]
    E. Bonetti, G. Schimperna, A. Segatti. On a doubly nonlinear model for the evolution of damaging in viscoelastic materials, Journal of Differential Equations 218(1), 91–116 (2005)
  • [3]
    L. Bartkowiak, I. Pawlow. The Cahn-Hilliard-Gurtin system coupled with elasticity, Control and Cybernetics 34, 1005–1043 (2005)
  • [4]
    J.W. Cahn. On spinodal decomposition, Acta Metal. 9, 795–801 (1961)
  • [5]
    M. Carrive, A. Miranville, A. Piétrus. The Cahn-Hilliard equation for deformable elastic continua, Adv. Math. Sci. Appl. 10(2), 539–569 (2000)
  • [6]
    M. Frémond, B. Nedjar. Damage, gradient of damage and principle of virtual power, Int. J. Solids Structures 33(8), 1083–1103 (1996)
  • [7]
    H. Garcke. Mechanical Effects in the Cahn-Hilliard Model: A Review on Mathematical Results, in: Mathematical Methods and Models in phase transitions, edited by A. Miranville (Nova Science Publ., New York, 2005), 44–77
  • [8]
    C. Heinemann, C. Kraus. Existence of weak solutions for Cahn-Hilliard systems coupled with elasticity and damage, Adv. Math. Sci. Appl. 21, 321–359 (2011).
  • [9]
    C. Heinemann, C. Kraus. Existence results for diffuse interface models describing phase separation and damage, WIAS preprint No. 1569 (2010)
  • [10]
    D. Knees, R. Rossi, C. Zanini. A vanishing viscosity approach to a rate-independent damage model, WIAS Preprint No. 1633, (2011)
  • [11]
    A. Mielke, M. Thomas, Damage of nonlinearly elastic materials at small strain -- Existence and regularity results, ZAMM Z. Angew. Math. Mech. 90, 88–112 (2010)