SEARCH

SEARCH BY CITATION

References

  • [1]
    P. Causin, J. Gereau, and F. Nobile, Computer Methods in Applied Mechanics and Engineering 194, 4506–4527 (2005).
  • [2]
    T. Hughes, W. Liu, and T. Zimmermann, Computer Methods in Applied Mechanics and Engineering 29, 329–349 (1981).
  • [3]
    J. Donea, Comput. Methods Appl. Mech. Engrg. 33, 689–723 (1982).
  • [4]
    R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis (AMS, 2000).
  • [5]
    J. Heywood, R. Rannacher, and S. Turek, Int. J. Numer. Math. Fluids. 22, 325–352 (1992).
  • [6]
    G. Holzapfel, Nonlinear Solid Mechanics: A Continuum Approach for Engineering (Wiley-Blackwell, 2000).
  • [7]
    S. Okazawa, K. Kashiyama, and Y. Kaneko, Int. J. Numer. Math. Fluids. 72, 1544–1559 (2007).
  • [8]
    D. Coutand and S. Shkoller, Arch. Ration. Mech. Anal. pp. 25–102 (2005).
  • [9]
    T. Dunne, Adaptive Finite Element Approximation of Fluid-Structure Interaction Based on Eulerian and Arbitrary Lagrangian-Eulerian Variational Formulations, PhD thesis, University of Heidelberg, 2007, urn:nbn:de:bsz:16-opus-79448.
  • [10]
    T. Richter, J. Comp. Phys. (submitted 2012).
  • [11]
    T. Richter, Vietnam J. Math. (2012), submitted.
  • [12]
    T. Richter and T. Wick, Computer Methods in Applied Mechanics and Engineering (2010), doi: 10.1016/j.cma.2010.04.016).
  • [13]
    J. Hron and S. Turek, Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow, in: Fluid-Structure Interaction: Modeling, Simulation, Optimization, edited by H. J. Bungartz and M. Schäfer, Lecture Notes in Computational Science and Engineering (Springer, 2006), pp. 371–385.