SEARCH

SEARCH BY CITATION

Keywords:

  • foams;
  • polybenzoxazine;
  • curing behavior;
  • foaming behavior

In this paper, polymer foams based on a benzoxazine resin have been successfully prepared using azodicarbonamide (ADC) as a chemical blowing agent and have been characterized regarding their foaming behavior, cellular structure, and physical properties. The effect of the ADC on the curing process of the resin was analyzed using differential scanning calorimetry and blowing agent decomposition was followed by thermogravitmetric analysis (TGA). The characterization of the cellular structure of the foamed samples was done using scanning electron microscopy. The mechanical properties of the foams were determined using compression tests and the thermal conductivity was assessed using the transient plane source method. The results indicated that the curing process and gas release took place in a similar time interval. The foams showed an isotropic cellular structure with relative densities in the range 0.35–0.60, and showed compressive strengths and compressive moduli in the range of 10–70 MPa and 400–1100 MPa, respectively. Thermal conductivities were in the range of 0.06–0.12 W m−1K−1. The findings in this paper demonstrate the possibility of producing polybenzoxazine foams using a simple process in which curing and foaming take place simultaneously. In addition, the mechanical characterization of these materials indicates that they are suitable for structural applications. Copyright © 2011 John Wiley & Sons, Ltd.