Mediators of receptor tyrosine kinase activation in infantile fibrosarcoma: a Children's Oncology Group study

Authors


  • The data discussed in this publication have been deposited in NCBI's Gene Expression Omnibus according to the MIAME guidelines and are accessible through GEO Series Accession No. GSE30946 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30946).

  • No conflicts of interest were declared.

Abstract

Infantile fibrosarcoma (IFS; also known as cellular congenital mesoblastic nephroma, CMN, when in the kidney) is a rare, undifferentiated tumour often characterized by the ETV6-NTRK3 fusion transcript. Our goal was to identify downstream pathways, diagnostic markers and potential therapeutic targets for IFS/CMN. Global gene expression, reverse-phase protein array and ETV6-NTRK3 fusion analyses were performed on 14 IFS/CMN and compared with 41 other paediatric renal tumours. These analyses confirm significant receptor tyrosine kinase (RTK) activation, with evidence of PI3-Akt, MAPK and SRC activation. In particular, GAB2 docking protein, STAT5-pTyr-694, STAT3-pSer-729 and YAP-pSer-127 were elevated, and TAZ-pSer-89 was decreased. This provides mRNA and proteomic evidence that GAB2, STAT activation and phosphorylation of the Hippo pathway transcription co-activators YAP and TAZ contribute to the RTK signal transduction in IFS/CMN. All IFS/CMN tumours displayed a distinctive gene expression pattern that may be diagnostically useful. Unexpectedly, abundant ETV6-NTRK3 transcript copies were present in only 7/14 IFS, with very low copy number in 3/14. An additional 4/14 were negative by RT-PCR and absence of ETV6-NTRK3 was confirmed by FISH for both ETV6 and NTRK3. Therefore, molecular mechanisms other than ETV6-NTRK3 fusion are responsible for the development of some IFS/CMNs and the absence of ETV6-NTRK3 fusion products should not exclude IFS/CMN as a diagnosis. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

Ancillary