SEARCH

SEARCH BY CITATION

References

  • 1
    Roger VL, Roger VL, Go AS, et al. Heart disease and stroke statistics – 2011 update: a report from the American Heart Association. Circulation 2011; 123: 1195.
  • 2
    Brown JR, Brown JR, Edwards FH, et al. The diabetic disadvantage: historical outcomes measures in diabetic patients undergoing cardiac surgery – the pre-intravenous insulin era. Semin Thorac Cardiovasc Surg 2006; 18: 281288.
  • 3
    Miketic JK, Miketic JK, Hravnak M, et al. Factors influencing the outcomes of patients with both coronary artery disease and diabetes enrolled in standard cardiac rehabilitation programs: a literature review. J Cardiovasc Nursing 2011; 26: 210217.
  • 4
    Fisher BM, Fisher BM. Heart abnormalities in IDDM. Diabetologia 1997; 40(suppl 2): S127129.
  • 5
    Flaherty JD, Flaherty JD, Davidson CJ, et al. Diabetes and coronary revascularization. J Am Med Assoc 2005; 293: 15011508.
  • 6
    Katayama T, Katayama T, Nakashima H, et al. Clinical outcomes and left ventricular function in diabetic patients with acute myocardial infarction treated by primary coronary angioplasty. Int Heart J 2005; 46: 607618.
  • 7
    Brener SJ, Mehran R, Dressler O, et al. Diabetes mellitus, myocardial reperfusion, and outcome in patients with acute ST-elevation myocardial infarction treated with primary angioplasty (from HORIZONS AMI). Am J Cardiol 2012; 109: 11111116.
  • 8
    Carson JL, Carson JL, Scholz PM, et al. Diabetes mellitus increases short-term mortality and morbidity in patients undergoing coronary artery bypass graft surgery. J Am Coll Cardiol 2002; 40: 418423.
  • 9
    Cohen Y, Cohen Y, Raz I, et al. Comparison of factors associated with 30-day mortality after coronary artery bypass grafting in patients with versus without diabetes mellitus. Israeli Coronary Artery Bypass (ISCAB) Study Consortium. Am J Cardiol 1998; 81: 711.
  • 10
    Luciani N, Luciani N, Nasso G, et al. Coronary artery bypass grafting in type II diabetic patients: a comparison between insulin-dependent and non-insulin-dependent patients at short- and mid-term follow-up. Ann Thorac Surg 2003; 76: 11491154.
  • 11
    Szabó Z, Szabó Z, Håkanson E, et al. Early postoperative outcome and medium-term survival in 540 diabetic and 2239 nondiabetic patients undergoing coronary artery bypass grafting. Ann Thorac Surg 2002; 74: 712719.
  • 12
    Anderson EJ, Anderson EJ, Kypson AP, et al. Substrate-specific derangements in mitochondrial metabolism and redox balance in the atrium of the type 2 diabetic human heart. J Am Coll Cardiol 2009; 54: 18911898.
  • 13
    Raedschelders K, Ansley DM, Chen DDY. The cellular and molecular origin of reactive oxygen species generation during myocardial ischemia and reperfusion. Pharmacol Ther 2012; 133: 230255.
  • 14
    Boudina S, Boudina S, Abel ED, et al. Diabetic cardiomyopathy, causes and effects. Rev Endocr Metab Disord 2010; 11: 3139.
  • 15
    Bugger H, Abel ED. Mitochondria in the diabetic heart. Cardiovasc Res 2010; 88: 229240.
  • 16
    Chen AF, Chen D-D, Daiber A, et al. Free radical biology of the cardiovascular system. Clin Sci 2012; 123: 7391.
  • 17
    Khalid MA, Ashraf M. Direct detection of endogenous hydroxyl radical production in cultured adult cardiomyocytes during anoxia and reoxygenation. Is the hydroxyl radical really the most damaging radical species? Circ Res 1993; 72: 725736.
  • 18
    Tanguy S, de Leiris J, Besse S, et al. Ageing exacerbates the cardiotoxicity of hydrogen peroxide through the Fenton reaction in rats. Mech Ageing Dev 2003; 124: 229235.
  • 19
    Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med 2007; 357: 11211135.
  • 20
    Zorov DB, Zorov DB, Filburn CR, et al. Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J Exp Med 2000; 192: 10011014.
  • 21
    Zorov DB, Zorov DB, Juhaszova M, et al. Mitochondrial ROS-induced ROS release: an update and review. Biochim Biophys Acta 2006; 1757: 509517.
  • 22
    Lisa F, Lisa F, Menabò R, et al. Opening of the mitochondrial permeability transition pore causes depletion of mitochondrial and cytosolic NAD+ and is a causative event in the death of myocytes in postischemic reperfusion of the heart. J Biol Chem 2001; 276: 25712575.
  • 23
    Vercesi AE, Vercesi AE, Kowaltowski AJ, et al. The role of reactive oxygen species in mitochondrial permeability transition. Biosci Rep 1997; 17: 4352.
  • 24
    Halestrap AP, Halestrap AP, Clarke SJ, et al. Mitochondrial permeability transition pore opening during myocardial reperfusion – a target for cardioprotection. Cardiovasc Res 2004; 61: 372385.
  • 25
    Kim J, Kim J, He L, et al. Mitochondrial permeability transition: a common pathway to necrosis and apoptosis. Biochem Biophys Res Commun 2003; 304: 463470.
  • 26
    Halestrap AP, Halestrap AP, Clarke SJ, et al. The role of mitochondria in protection of the heart by preconditioning. Biochim Biophys Acta 2007; 1767: 10071031.
  • 27
    Honda HM, Honda HM, Ping P, et al. Mitochondrial permeability transition in cardiac cell injury and death. Cardiovasc Drugs Ther 2006; 20: 425432.
  • 28
    Gustafsson AB, Gustafsson AB, Gottlieb RA, et al. Heart mitochondria: gates of life and death. Cardiovasc Res 2008; 77: 334343.
  • 29
    Hausenloy D, Hausenloy D, Wynne A, et al. Transient mitochondrial permeability transition pore opening mediates preconditioning-induced protection. Circulation 2004; 109: 17141717.
  • 30
    Juhaszova M, Juhaszova M, Zorov DB, et al. Role of glycogen synthase kinase-3β in cardioprotection. Circ Res 2009; 104: 12401252.
  • 31
    Kerr PM, Kerr PM, Suleiman MS, et al. Reversal of permeability transition during recovery of hearts from ischemia and its enhancement by pyruvate. Am J Physiol 1999; 276: H496502.
  • 32
    Bernardi P, Bernardi P, Vassanelli S, et al. Modulation of the mitochondrial permeability transition pore. Effect of protons and divalent cations. J Biol Chem 1992; 267: 29342939.
  • 33
    Qian T, Qian T, Nieminen AL, et al. Mitochondrial permeability transition in pH-dependent reperfusion injury to rat hepatocytes. Am J Physiol 1997; 273: C17831792.
  • 34
    Selivanov VA, Selivanov VA, Zeak JA, et al. The role of external and matrix pH in mitochondrial reactive oxygen species generation. J Biol Chem 2008; 283: 2929229300.
  • 35
    Scrutinio D, Scrutinio D, Giannuzzi P, et al. Comorbidity in patients undergoing coronary artery bypass graft surgery: impact on outcome and implications for cardiac rehabilitation. Eur J Cardiovasc Prevent Rehab 2008; 15: 379385.
  • 36
    Paulson DJ. The diabetic heart is more sensitive to ischemic injury. Cardiovasc Res 1997; 34: 104112.
  • 37
    Whittington HJ, Babu GG, Mocanu MM, et al. The diabetic heart: too sweet for its own good? Cardiol Res Pract 2012; 2012: 845698.
  • 38
    Balakumar P, Sharma NK. Healing the diabetic heart: does myocardial preconditioning work? Cell Signal 2011; 24: 5359.
  • 39
    Maritim AC, Sanders RA, Watkins JB. Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol 2003; 17: 2438.
  • 40
    Folli F, Corradi D, Fanti P, et al. The role of oxidative stress in the pathogenesis of type 2 diabetes mellitus micro- and macrovascular complications: avenues for a mechanistic-based therapeutic approach. Curr Diabetes Rev 2011; 7: 313324.
  • 41
    Yokota T, Kinugawa S, Hirabayashi K, et al. Oxidative stress in skeletal muscle impairs mitochondrial respiration and limits exercise capacity in type 2 diabetic mice. Am J Physiol Heart Circ Physiol 2009; 297: H10691077.
  • 42
    Ramakrishna V, Jailkhani R. Oxidative stress in non-insulin-dependent diabetes mellitus (NIDDM) patients. Acta Diabetol 2008; 45: 4146.
  • 43
    Wang B, Wang B, Raedschelders K, et al. Differences in myocardial PTEN expression and Akt signalling in type 2 diabetic and nondiabetic patients undergoing coronary bypass surgery. Clin Endocrinol 2011; 74: 705713.
  • 44
    Lewis P, Stefanovic N, Pete J, et al. Lack of the antioxidant enzyme glutathione peroxidase-1 accelerates atherosclerosis in diabetic apolipoprotein E-deficient mice. Circulation 2007; 115: 21782187.
  • 45
    Fardoun RZ. The use of vitamin E in type 2 diabetes mellitus. Clin Exp Hypertens 2007; 29: 135148.
  • 46
    Rolo AP, Palmeira CM. Diabetes and mitochondrial function: role of hyperglycemia and oxidative stress. Toxicol Appl Pharmacol 2006; 212: 167178.
  • 47
    Sack MN. Type 2 diabetes, mitochondrial biology and the heart. J Mol Cell Cardiol 2009; 46: 842849.
  • 48
    Nishikawa T, Nishikawa T, Edelstein D, et al. The missing link: a single unifying mechanism for diabetic complications. Kidney Int Suppl 2000; 77: S2630.
  • 49
    Nishikawa T, Nishikawa T, Edelstein D, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 2000; 404: 787790.
  • 50
    Matsushima S, Kinugawa S, Yokota T, et al. Increased myocardial NAD(P)H oxidase-derived superoxide causes the exacerbation of postinfarct heart failure in type 2 diabetes. Am J Physiol Heart Circ Physiol 2009; 297: H409416.
  • 51
    Inoguchi T, Sonta T, Tsubouchi H, et al. Protein kinase C-dependent increase in reactive oxygen species (ROS) production in vascular tissues of diabetes: role of vascular NAD(P)H oxidase. J Am Soc Nephrol 2003; 14: S227232.
  • 52
    Guzik TJ, Mussa S, Gastaldi D, et al. Mechanisms of increased vascular superoxide production in human diabetes mellitus: role of NAD(P)H oxidase and endothelial nitric oxide synthase. Circulation 2002; 105: 16561662.
  • 53
    Takayanagi R, Inoguchi T, Ohnaka K. Clinical and experimental evidence for oxidative stress as an exacerbating factor of diabetes mellitus. J Clin Biochem Nutr 2011; 48: 7277.
  • 54
    Okazaki T, Otani H, Shimazu T, et al. Ascorbic acid and N-acetyl cysteine prevent uncoupling of nitric oxide synthase and increase tolerance to ischemia/reperfusion injury in diabetic rat heart. Free Rad Res 2011; 45: 11731183.
  • 55
    Maalouf RM, Eid AA, Gorin YC, et al. Nox4-derived reactive oxygen species mediate cardiomyocyte injury in early type 1 diabetes. Am J Physiol Cell Physiol 2012; 302: C597604.
  • 56
    Okazaki T, Otani H, Shimazu T, et al. Reversal of inducible nitric oxide synthase uncoupling unmasks tolerance to ischemia/reperfusion injury in the diabetic rat heart. J Mol Cell Cardiol 2011; 50: 534544.
  • 57
    Shen GX. Oxidative stress and diabetic cardiovascular disorders: roles of mitochondria and NADPH oxidase. Can J Physiol Pharmacol 2010; 88: 241248.
  • 58
    Wolff SP, Wolff SP, Dean RT, et al. Glucose autoxidation and protein modification. The potential role of 'autoxidative glycosylation' in diabetes. Biochem J 1987; 245: 243250.
  • 59
    Kennedy AL, Kennedy AL, Lyons TJ, et al. Glycation, oxidation, and lipoxidation in the development of diabetic complications. Metab Clin Exp 1997; 46: 1421.
  • 60
    Schmidt AM, Schmidt AM, Hori O, et al. Cellular receptors for advanced glycation end products. Implications for induction of oxidant stress and cellular dysfunction in the pathogenesis of vascular lesions. Arterioscler Thrombos 1994; 14: 15211528.
  • 61
    Yim MB, Yim MB, Yim HS, et al. Protein glycation: creation of catalytic sites for free radical generation. Ann NY Acad Sci 2001; 928: 4853.
  • 62
    Kawamura N, Kawamura N, Ookawara T, et al. Increased glycated Cu,Zn-superoxide dismutase levels in erythrocytes of patients with insulin-dependent diabetis mellitus. J Clin Endocrinol Metab 1992; 74: 13521354.
  • 63
    Morgan PE, Morgan PE, Dean RT, et al. Inactivation of cellular enzymes by carbonyls and protein-bound glycation/glycoxidation products. Arch Biochem Biophys 2002; 403: 259269.
  • 64
    Song F, Jia W, Yao Y, et al. Oxidative stress, antioxidant status and DNA damage in patients with impaired glucose regulation and newly diagnosed type 2 diabetes. Clin Sci 2007; 112: 599606.
  • 65
    Boden G. Free fatty acids, insulin resistance, and type 2 diabetes mellitus. Proc Assoc Am Physic 1999; 111: 241248.
  • 66
    Inoguchi T, Li P, Umeda F, et al. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes 2000; 49: 19391945.
  • 67
    Sheikh-Ali M, Chehade JM, Mooradian AD. The antioxidant paradox in diabetes mellitus. Am J Ther 2011; 18: 266278.
  • 68
    Ozgen IT, Tascilar ME, Bilir P, et al. Oxidative stress in obese children and its relation with insulin resistance. J Pediatr Endocrinol Metab 2012; 25: 261266.
  • 69
    Boudina S, Bugger H, Sena S, et al. Contribution of impaired myocardial insulin signaling to mitochondrial dysfunction and oxidative stress in the heart. Circulation 2009; 119: 12721283.
  • 70
    Yue T-L, Bao W, Gu J-L, et al. Rosiglitazone treatment in Zucker diabetic fatty rats is associated with ameliorated cardiac insulin resistance and protection from ischemia/reperfusion-induced myocardial injury. Diabetes 2005; 54: 554562.
  • 71
    Hausenloy DJ, Yellon DM. Reperfusion injury salvage kinase signalling: taking a RISK for cardioprotection. Heart Fail Rev 2007; 12: 217234.
  • 72
    Mullonkal CJ, Toledo-Pereyra LH. Akt in ischemia and reperfusion. J Invest Surg 2007; 20: 195203.
  • 73
    Sivaraman V, Hausenloy DJ, Wynne AM, et al. Preconditioning the diabetic human myocardium. J Cell Mol Med 2010; 14: 17401746.
  • 74
    Tsang A, Hausenloy DJ, Mocanu MM, et al. Preconditioning the diabetic heart: the importance of Akt phosphorylation. Diabetes 2005; 54: 23602364.
  • 75
    Sasso FC, Torella D, Carbonara O, et al. Increased vascular endothelial growth factor expression but impaired vascular endothelial growth factor receptor signaling in the myocardium of type 2 diabetic patients with chronic coronary heart disease. J Am Coll Cardiol 2005; 46: 827834.
  • 76
    Kang KH, Lemke G, Kim JW. The PI3K–PTEN tug-of-war, oxidative stress and retinal degeneration. Trends Mol Med 2009; 15: 191198.
  • 77
    Mocanu MM, Field DC, Yellon DM. A potential role for PTEN in the diabetic heart. Cardiovasc Drugs Ther 2006; 20: 319321.
  • 78
    Ruan H, Li J, Ren S, et al. Inducible and cardiac specific PTEN inactivation protects ischemia/reperfusion injury. J Mol Cell Cardiol 2009; 46: 193200.
  • 79
    Seo JH, Ahn Y, Lee S-R, et al. The major target of the endogenously generated reactive oxygen species in response to insulin stimulation is phosphatase and tensin homolog and not phosphoinositide-3 kinase (PI-3 kinase) in the PI-3 kinase/Akt pathway. Mol Biol Cell 2005; 16: 348357.
  • 80
    Song P, Wu Y, Xu J, et al. Reactive nitrogen species induced by hyperglycemia suppresses Akt signaling and triggers apoptosis by upregulating phosphatase PTEN (phosphatase and tensin homologue deleted on chromosome 10) in an LKB1-dependent manner. Circulation 2007; 116: 15851595.
  • 81
    Wang XL, Wang XL, Zhang L, et al. Free fatty acids inhibit insulin signaling-stimulated endothelial nitric oxide synthase activation through upregulating PTEN or inhibiting Akt kinase. Diabetes 2006; 55: 23012310.
  • 82
    Xueliang, Xueliang, Edelstein D, et al. Insulin resistance reduces arterial prostacyclin synthase and eNOS activities by increasing endothelial fatty acid oxidation. J Clin Invest 2006; 116: 10711080.
  • 83
    Lecour S. Multiple protective pathways against reperfusion injury: a SAFE path without Aktion? J Mol Cell Cardiol 2009; 46: 607609.
  • 84
    Reich NC. STAT3 revs up the powerhouse. Sci Signal 2009; 2: pe61.
  • 85
    Boengler K, Hilfiker-Kleiner D, Drexler H, et al. The myocardial JAK/STAT pathway: from protection to failure. Pharmacol Ther 2008; 120: 172185.
  • 86
    Lecour S. Activation of the protective survivor activating factor enhancement (SAFE) pathway against reperfusion injury: does it go beyond the RISK pathway? J Mol Cell Cardiol 2009; 47: 3240.
  • 87
    Goodman MD, Koch SE, Fuller-Bicer GA, et al. Regulating RISK: a role for JAK–STAT signaling in postconditioning? Am J Physiol Heart Circ Physiol 2008; 295: H16491656.
  • 88
    Wegrzyn J, Potla R, Chwae Y-J, et al. Function of mitochondrial Stat3 in cellular respiration. Science 2009; 323: 793797.
  • 89
    Boengler K, Hilfiker-Kleiner D, Heusch G, et al. Inhibition of permeability transition pore opening by mitochondrial STAT3 and its role in myocardial ischemia/reperfusion. Basic Res Cardiol 2010; 105: 771785.
  • 90
    Smith CCT, Dixon RA, Wynne AM, et al. Leptin-induced cardioprotection involves JAK/STAT signaling that may be linked to the mitochondrial permeability transition pore. Am J Physiol Heart Circ Physiol 2010; 299: H12651270.
  • 91
    Boengler K, Buechert A, Heinen Y, et al. Cardioprotection by ischemic postconditioning is lost in aged and STAT3-deficient mice. Circ Res 2008; 102: 131135.
  • 92
    Lacerda L, Somers S, Opie L, et al. Ischaemic postconditioning protects against reperfusion injury via the SAFE pathway. Cardiovasc Res 2009; 84: 201208.
  • 93
    Hilfiker-Kleiner D, Hilfiker A, Fuchs M, et al. Signal transducer and activator of transcription 3 is required for myocardial capillary growth, control of interstitial matrix deposition, and heart protection from ischemic injury. Circ Res 2004; 95: 187195.
  • 94
    Haghikia A, Stapel B, Hoch M, et al. STAT3 and cardiac remodeling. Heart Fail Rev 2011; 16: 3547.
  • 95
    Drenger B, Ostrovsky IA, Barak M, et al. Diabetes blockade of sevoflurane postconditioning is not restored by insulin in the rat heart: phosphorylated signal transducer and activator of transcription 3- and phosphatidylinositol 3-kinase-mediated inhibition. Anesthesiology 2011; 114: 13641372.
  • 96
    Schneider R, Welt K, Aust W, et al. Cardiac ischemia and reperfusion in spontaneously diabetic rats with and without application of EGb 761: I. cardiomyocytes. Histol Histopathol 2008; 23: 807817.
  • 97
    Ananthakrishnan R, Ananthakrishnan R, Kaneko M, et al. Aldose reductase mediates myocardial ischemia–reperfusion injury in part by opening mitochondrial permeability transition pore. Am J Physiol Heart Circ Physiol 2009; 296: H333341.
  • 98
    Tang WH, Tang WH, Kravtsov GM, et al. Polyol pathway impairs the function of SERCA and RyR in ischemic-reperfused rat hearts by increasing oxidative modifications of these proteins. J Mol Cell Cardiol 2010; 49: 5869.
  • 99
    Tang WH, Tang WH, Wu S, et al. Polyol pathway mediates iron-induced oxidative injury in ischemic-reperfused rat heart. Free Rad Biol Med 2008; 45: 602610.
  • 100
    Du XL, Edelstein D, Dimmeler S, et al. Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site. J Clin Invest 2001; 108: 13411348.
  • 101
    Federici M, Menghini R, Mauriello A, et al. Insulin-dependent activation of endothelial nitric oxide synthase is impaired by O-linked glycosylation modification of signaling proteins in human coronary endothelial cells. Circulation 2002; 106: 466472.
  • 102
    Marsh SA, Dell'Italia LJ, Chatham JC. Activation of the hexosamine biosynthesis pathway and protein O-GlcNAcylation modulate hypertrophic and cell signaling pathways in cardiomyocytes from diabetic mice. Amino Acids 2011; 40: 819828.
  • 103
    Rajamani U, Joseph D, Roux S, et al. The hexosamine biosynthetic pathway can mediate myocardial apoptosis in a rat model of diet-induced insulin resistance. Acta Physiol (Oxf) 2011; 202: 151157.
  • 104
    Hasnan J, Yusof MI, Damitri TD, et al. Relationship between apoptotic markers (Bax and Bcl-2) and biochemical markers in type 2 diabetes mellitus. Singapore Med J 2010; 51: 5055.
  • 105
    Song Y, Wang J, Li Y, et al. Cardiac metallothionein synthesis in streptozotocin-induced diabetic mice, and its protection against diabetes-induced cardiac injury. Am J Pathol 2005; 167: 1726.
  • 106
    Oshima Y, Fujio Y, Nakanishi T, et al. STAT3 mediates cardioprotection against ischemia/reperfusion injury through metallothionein induction in the heart. Cardiovasc Res 2005; 65: 428435.
  • 107
    Barry SP, Townsend PA, Knight RA, et al. STAT3 modulates the DNA damage response pathway. Int J Exp Pathol 2010; 91: 506514.
  • 108
    Barry SP, Townsend PA, McCormick J, et al. STAT3 deletion sensitizes cells to oxidative stress. Biochem Biophys Res Commun 2009; 385: 324329.
  • 109
    Liu X, Wei J, Peng DH, et al. Absence of heme oxygenase-1 exacerbates myocardial ischemia/reperfusion injury in diabetic mice. Diabetes 2005; 54: 778784.
  • 110
    Luan R, Liu S, Yin T, et al. High glucose sensitizes adult cardiomyocytes to ischaemia/reperfusion injury through nitrative thioredoxin inactivation. Cardiovasc Res 2009; 83: 294302.
  • 111
    Yin T, Hou R, Liu S, et al. Nitrative inactivation of thioredoxin-1 increases vulnerability of diabetic hearts to ischemia/reperfusion injury. J Mol Cell Cardiol 2010; 49: 354361.
  • 112
    Wang XL, Lau WB, Yuan YX, et al. Methylglyoxal increases cardiomyocyte ischemia–reperfusion injury via glycative inhibition of thioredoxin activity. Am J Physiol Endocrinol Metab 2010; 299: E207214.
  • 113
    Sun Y. Oxidative stress and cardiac repair/remodeling following infarction. Am J Med Sci 2007; 334: 197205.
  • 114
    Sun Y. Myocardial repair/remodelling following infarction: roles of local factors. Cardiovasc Res 2009; 81: 482490.
  • 115
    Eguchi M, Eguchi M, Kim YH, et al. Ischemia–reperfusion injury leads to distinct temporal cardiac remodeling in normal versus diabetic mice. PloS One 2012; 7: 110.
  • 116
    Smith HM, Smith HM, Hamblin M, et al. Greater propensity of diabetic myocardium for oxidative stress after myocardial infarction is associated with the development of heart failure. J Mol Cell Cardiol 2005; 39: 657665.
  • 117
    Aragno M, Mastrocola R, Alloatti G, et al. Oxidative stress triggers cardiac fibrosis in the heart of diabetic rats. Endocrinology 2008; 149: 380388.
  • 118
    Gurusamy N, Das DK. Autophagy, redox signaling, and ventricular remodeling. Antioxid Redox Signal 2009; 11: 19751988.
  • 119
    Sena S, Sena S, Hu P, et al. Impaired insulin signaling accelerates cardiac mitochondrial dysfunction after myocardial infarction. J Mol Cell Cardiol 2009; 46: 910918.
  • 120
    Anderson EJ, Anderson EJ, Rodriguez E, et al. Increased propensity for cell death in diabetic human heart is mediated by mitochondrial-dependent pathways. AmJ Physiol Heart Circ Physiol 2011; 300: H118124.