Initial testing (Stage 1) of the antibody-maytansinoid conjugate, IMGN901 (Lorvotuzumab mertansine), by the pediatric preclinical testing program


  • Conflict of interest: Nothing to declare.

Correspondence to: John M. Maris, Hematology–Oncology Division of Oncology, Children's Hospital Philadelphia, 3615 Civic Center Blvd, CTRB 3060 Philadelphia, PA 19104–4318.




IMGN901 (lorvotuzumab mertansine) is an antibody-drug conjugate composed of a humanized antibody that specifically binds to CD56 (NCAM, neural cell adhesion molecule) and that is conjugated to the maytansinoid, DM1 (a microtubule targeting agent).


IMGN901 and DM1-SMe (unconjugated DM1 as a mixed disulfide with thiomethane to cap its sulfhydryl group) were tested in vitro at concentrations ranging from 0.01 nM to 0.1 µM and 0.3 pM to 3 nM, respectively. IMGN901 was tested against a subset of PPTP solid tumor xenografts focusing on those with high CD56 expression.The combination of IMGN901 with topotecan was also evaluated.


Neuroblastoma models expressed CD56 at or above the median expression level for all PPTP xenografts and cell lines. Neuroblastoma cell lines demonstrated relatively low sensitivity to DM1-SMe compared to other cell lines, but the sensitivity of neuroblastoma cell lines to IMGN901 was comparable to that of non-neuroblastoma cell lines. In vivo, objective responses were observed in 9 of 24 (38%) models including, three of seven neuroblastoma xenografts, and two of seven rhabdomyosarcoma xenografts. All xenografts with objective responses showed homogeneous high-level staining by IHC for CD56, but not all xenografts with homogenous high-level staining had objective responses. Combined with topotecan, IMGN901 demonstrated therapeutic enhancement against two of four neuroblastoma models.


IMGN901 has anti-tumor activity against some CD56 expressing pediatric cancer models. High expression of CD56 is a biomarker for in vivo response, but resistance mechanisms to IMGN901 in some high CD56 expressing lines need to be defined. Pediatr Blood Cancer 2013;60:1860–1867. © 2013 Wiley Periodicals, Inc.