Poly(L-lactide)/Poly(D-lactide)/clay nanocomposites: Enhanced dispersion, crystallization, mechanical properties, and hydrolytic degradation



Poly(L-lactide) (PLLA)/poly(D-lactide) (PDLA)/clay nanocomposites are prepared via simple melt blending method at PDLA loadings from 5 to 20 wt%. Formation of the stereocomplex crystals in the nanocomposites is confirmed by differential scanning calorimetry and wide-angle X-ray diffraction (WAXD). The internal structure of the nanocomposites has been established by using WAXD and transmission electron microscope analyses. The dispersion of clay in the PLLA/PDLA/clay nanocomposites can be improved as a result of increased intensity of shear during melt blending. The overall crystallization rates are faster in the PLLA/PDLA/clay nanocomposites than in PLLA/clay nanocomposite and increase with an increase in the PDLA loading up to 10 wt%; however, the crystallization mechanism and crystal structure of these nanocomposites remain unchanged despite the presence of PDLA. The storage modulus has been apparently improved in the PLLA/PDLA/clay nanocomposites with respect to PLLA/clay nanocomposite. Moreover, it is found that the hydrolytic degradation rates have been enhanced obviously in the PLLA/PDLA/clay nanocomposites than in PLLA/clay nanocomposite. POLYM. ENG. SCI., 54:914–924, 2014. © 2013 Society of Plastics Engineers