SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Green MA, Emery K, King DL, Igari S. Solar cell efficiency tables (version 15). Progress in Photovoltaics: Research and Applications 2000; 8: 187196.
  • 2
    Green MA, Emery K, Hishikawa Y, Warta W. Solar cell efficiency tables (version 33). Progress in Photovoltaics: Research and Applications 2009; 17: 8594.
  • 3
    Green MA, Emery K, Hishikawa Y, Warta W. Solar cell efficiency tables (version 35). Progress in Photovoltaics: Research and Applications 2010; 18: 144150.
  • 4
    Benagli S, Borrello D, Vallat-Sauvain E, Meier J, Kroll U, Hötzel J, et al. High-efficiency amorphous silicon devices on LPCVD-ZNO TCO prepared in industrial KAI-M R&D reactor, 24th European Photovoltaic Solar Energy Conference, Hamburg, September 2009.
  • 5
    Morooka M, Noda K. Development of dye-sensitized solar cells and next generation energy devices, 88th Spring Meeting of The Chemical Society of Japan, Tokyo, 26 March 2008.
  • 6
  • 7
    Niinobe D, Nishimura K, Matsuno S, Fujioka H, Katsura T, Okamoto T, Ishihara T, Morikawa H, Arimoto S. Honeycomb structured multi-crystalline silicon solar cells with 18.6% efficiency via industrially applicable laser-process, 23rd European Photovoltaic Solar Energy Conference and Exhibition, Valencia, Session Reference: 2CV.5.74, 2008.
  • 8
    Wojtczuk S, Chiu P, Zhang X, Derkacs D, Harris C, Pulver D, Timmons M. 'InGaP/GaAs/InGaAs Concentrators using Bi-Facial Epigrowth, 35th IEEE PVSC, Honolulu, HI, June 2010.
  • 9
    Garcia I, Rey-Stolle I, Gallana B, Algora C. A 32.6% efficient lattice-matched dual-junction solar cell working at 1000 suns. Applied Physics Letters 2009; 94: 053509.
  • 10
    Zhao J, Wang A, Green MA, Ferrazza F. Novel 19.8% efficient ‘honeycomb’ textured multicrystalline and 24.4% monocrystalline silicon solar cells. Applied Physics Letters 1998; 73: 19911993.
  • 11
    Schultz O, Glunz SW, Willeke GP. Multicrystalline silicon solar cells exceeding 20% efficiency. Progress in Photovoltaics: Research and Applications 2004; 12: 553558.
  • 12
    Bergmann RB, Rinke TJ, Berge C, Schmidt J, Werner JH. Advances in monocrystalline Si thin-film solar cells by layer transfer, Technical Digest, PVSEC-12, June 2001, Chefju Island, Korea; 1115.
  • 13
    Keevers MJ, Young TL, Schubert U, Green MA. 10% efficient CSG minimodules, 22nd European Photovoltaic Solar Energy Conference, Milan, September 2007.
  • 14
    Bauhuis GJ, Mulder P, HaverKamp EJ, Huijben JCCM, Schermer JJ. 26.1% thin-film GaAs solar cell using epitaxial lift-off. Solar Energy Materials and Solar Cells 2009; 93: 14881491.
  • 15
    Venkatasubramanian R, O'Quinn BC, Hills JS, Sharps PR, Timmons ML, Hutchby JA, Field H, Ahrenkiel A, Keyes B. 18.2% (AM1.5) efficient GaAs solar cell on optical-grade polycrystalline Ge substrate, Conference Record, 25th IEEE Photovoltaic Specialists Conference, Washington, May 1997; 3136.
  • 16
    Keavney CJ, Haven VE, Vernon SM. Emitter structures in MOCVD InP solar cells, Conference Record, 21st IEEE Photovoltaic Specialists Conference, Kissimimee, May 1990; 141144.
  • 17
    Repins I, Contreras M, Romero Y, Yan Y, Metzger W, Li J, Johnston S, Egaas B, DeHart C, Scharf J, McCandless BE, Noufi R. Characterization of 19.9%-efficienct CIGS absorbers, 33th IEEE Photovoltaics Specialists Conference Record, 2008.
  • 18
    Kessler J, Bodegard M, Hedstrom J, Stolt L. New world record Cu (In,Ga) Se2 based mini-module: 16.6%, Proceedings of 16th European Photovoltaic Solar Energy Conference, Glasgow, 2000; 20572060.
  • 19
    Wu X, Keane JC, Dhere RG, DeHart C, Duda A, Gessert TA, Asher S, Levi DH, Sheldon P. 16.5%-efficient CdS/CdTe polycrystalline thin-film solar cell, Proceedings of 17th European Photovoltaic Solar Energy Conference, Munich, 22–26 October 2001; 9951000.
  • 20
    Yamamoto K, Toshimi M, Suzuki T, Tawada Y, Okamoto T, Nakajima A. Thin film poly-Si solar cell on glass substrate fabricated at low temperature, MRS Spring Meeting, April 1998, San Francisco.
  • 21
    Chiba Y, Islam A, Kakutani K, Komiya R, Koide N, Han L. High efficiency dye sensitized solar cells, Technical Digest, 15th International Photovoltaic Science and Engineering Conference, Shanghai, October 2005; 665666.
  • 22
  • 23
  • 24
    Ohmori M, Takamoto T, Ikeda E, Kurita H. High efficiency InGaP/GaAs tandem solar cells, Techical Digest, International PVSEC-9, Miyasaki, Japan, November 1996; 525528.
  • 25
    Mitchell K, Eberspacher C, Ermer J, Pier D. Single and tandem junction CuInSe2 cell and module technology, Conference Record, 20th IEEE Photovoltaic Specialists Conference, Las Vegas, September 1988; 13841389.
  • 26
    Yoshimi M, Sasaki T, Sawada T, Suezaki T, Meguro T, Matsuda T, Santo K, Wadano K, Ichikawa M, Nakajima A, Yamamoto K. High efficiency thin film silicon hybrid solar cell module on Im2-class large area substrate, Conference Record, 3rd World Conference on Photovoltaic Energy Conversion, Osaka, May 2003; 15661569.
  • 27
  • 28
    Jorgensen M, Norrman K, Krebs FC. Stability/degradation of polymer solar cells. Solar Energy Materials and Solar Cells 2008; 92: 686714.
  • 29
    Kato N, Higuchi K, Tanaka H, Nakajima J, Sano T, Toyoda T. Improvement in the long-term stability of dye-sensitized solar cell for outdoor use, presented at 19th International Photovoltaic Science and Engineering Conference, Korea, November 2009.
  • 30
    Zhao J, Wang A, Yun F, Zhang G, Roche DM, Wenham SR, Green MA. 20,000 PERL silicon cells for the ‘1996 World Solar Challenge’ solar car race. Progress in Photovoltaics: Research and Applications 1997; 5: 269276.
  • 31
    Swanson RM. Solar cells at the cusp, presented at 19th International Photovoltaic Science and Engineering Conference, Korea, November 2009.
  • 32
    Basore PA. Pilot production of thin-film crystalline silicon on glass modules, Conference Record, 29th IEEE Photovoltaic Specialists Conference, New Orleans, May 2002; 4952.
  • 33
    Tanaka Y, Akema N, Morishita T, Okumura D, Kushiya K. Improvement of Voc upward of 600mV/cell with CIGS-based absorber prepared by Selenization/Sulfurization, Conference Proceedings, 17th EC Photovoltaic Solar Energy Conference, Munich, October 2001; 989994.
  • 34
    Cunningham D, Davies K, Grammond L, Mopas E, O'Connor N, Rubcich M, Sadeghi M, Skinner D, Trumbly T. Large area Apollo™ module performance and reliability, Conference Record, 28th IEEE Photovoltaic Specialists Conference, Alaska, September 2000; 1318.
  • 35
    Yang J, Banerjee A, Glatfelter T, Hoffman K, Xu X, Guha S. Progress in triple-junction amorphous silicon-based alloy solar cells and modules using hydrogen dilution, Conference Record, 1st World Conference on Photovoltaic Energy Conversion, Hawaii, December 1994; 380385.
  • 36
    Zhao J, Wang A, Green MA. 24.5% efficiency silicon PERT cells on MCZ substrates and 24.7% efficiency PERL cells on FZ substrates. Progress in Photovoltaics: Research and Applications 1999; 7: 471474.
  • 37
    Maruyama E, Terakawa A, Taguchi M, Yoshimine Y, Ide D, Baba T, Shima M, Sakata H, Tanaka M. Sanyo's challenges to the development of high-efficiency HIT solar cells and the expansion of HIT business, 4th World Conference on Photovoltaic Energy Conversion (WCEP-4), Hawaii, May 2006.
  • 38
    McIntosh K, Cudzonovic M, Smith D, Mulligan W, Swanson R. The choice of silicon wafer for the production of rear-contact solar cells, Conference Record, 3rd World Conference on Photovoltaic Energy Conversion, Osaka, May 2003; 971974.
  • 39
    Takamoto T, Sasaki K, Agui T, Juso H, Yoshida A, Nakaido K. III–V compound solar cells. SHARP Technical Journal 2010; 100: 121.
  • 40
    Yan B, Yue G, Guha S. Status of nc-Si:H solar cells at United Solar and roadmap for manufacturing a-Si:H and nc-Si:H based solar panels. In Amorphous and Polycrystalline Thin-Film Silicon Science and Technology 2007, Vol. 989, ChuV, MiyazakiS, NathanA, YangJ, ZanH-W (eds). Materials Research Society Symposium Proceeding: Warrendale, PA, 2007, Paper #: 0989-A15-01.
  • 41
    Han L, Fukui A, Fuke N, Koide N, Yamanaka R. High efficiency of dye sensitized solar cell and module, 4th World Conference on Photovoltaic Energy Conversion (WCEP-4), Hawaii, May 2006.
  • 42
    Slade A, Garboushian V. 27.6% efficient silicon concentrator cell for mass production, Technical Digest, 15th International Photovoltaic Science and Engineering Conference Shanghai, October 2005; 701.
  • 43
    King RR, Boca A, Hong W, Liu X-Q, Bhusari D, Larrabee D, Edmondson KM, Law DC, Fetzer CM, Mesropian S, Karam NH. Band-gap-engineered architectures for high-efficiency multijunction concentrator solar cells, presented at the 24th European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, Germany, 21–25 September 2009.
  • 44
    Wang X, Waite N, Murcia P, Emery K, Steiner M, Kiamilev F, Goossen K, Honsberg C, Barnett A. Outdoor measurements for high efficiency solar cell assemblies, presented at the 24th European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, Germany, 21–25 September 2009.
  • 45
    O'Neil MJ, McDanal AJ. Outdoor measurement of 28% efficiency for a mini-concentrator module, Proceedings, National Center for Photovoltaics Program Review Meeting, Denver, 16–19 April 2000.
  • 46
    Chiang CJ, Richards EH. A 20% efficient photovoltaic concentrator module, Conference Record, 21st IEEE Photovoltaic Specialists Conference, Kissimimee, May 1990; 861863.
  • 47
    Zhang F, Wenham SR, Green MA. Large area, concentrator buried contact solar cells. IEEE Transactions on Electron Devices 1995; 42: 144149.
  • 48
    Gueymard CA, Myers D, Emery K. Proposed reference irradiance spectra for solar energy systems testing. Solar Energy 2002; 73: 443467.