SEARCH

SEARCH BY CITATION

Keywords:

  • Cu(In,Ga)Se2;
  • vacancy compounds;
  • Cu content;
  • Na;
  • solar cells;
  • co-evaporation

ABSTRACT

In order to transfer the potential for the high efficiencies seen for Cu(In,Ga)Se2 (CIGSe) thin films from co-evaporation processes to cheaper large-scale deposition techniques, a more intricate understanding of the CIGSe growth process for high-quality material is required. Hence, the growth mechanism for chalcopyrite-type thin films when varying the Cu content during a multi-stage deposition process is studied. Break-off experiments help to understand the intermediate growth stages of the thin-film formation. The film structure and morphology are studied by X-ray diffraction and scanning electron microscopy. The different phases at the film surface are identified by Raman spectroscopy. Depth-resolved compositional analysis is carried out via glow discharge optical emission spectrometry. The experimental results imply an affinity of Na for material phases with a Cu-poor composition, affirming a possible interaction of sodium with Cu vacancies mainly via In(Ga)Cu antisite defects. An efficiency of 12.7% for vacancy compound-based devices is obtained. Copyright © 2011 John Wiley & Sons, Ltd.