Analysis of short circuit current gains by an anti-reflective textured cover on silicon thin film solar cells



The influence of a retro-reflective texture cover on light in-coupling and light-trapping in thin film silicon solar cells is investigated. The texture cover is applied to the front glass of the cell and leads to a reflectance as low as r ≈ 3% by reducing the reflection at the air/glass interface and indirectly also reducing the reflections from the internal interfaces. For weakly absorbed light in the long wavelength range, the texture also enhances the light-trapping in the solar cell. We demonstrate an increase of the short circuit current density of exemplary investigated thin film silicon tandem solar cells by up to 0.95 mA cm−2 and of the conversion efficiency by up to 0.74% (absolute). For a planar microcrystalline solar cell, the enhancement of light-trapping was determined from the reduced reflection in the long wavelength range to be up to 17%, leading to an increase of the external quantum efficiency of up to 12%. Copyright © 2012 John Wiley & Sons, Ltd.