SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Mitzi DB, Gunawan O, Todorov TK, Wang K, Guha S. The path towards a high-performance solution-processed kesterite solar cell. Solar Energy Materials and Solar Cells 2011; 95: 14211436.
  • 2
    Barkhouse DAR, Gunawan O, Gokmen T, Todorov TK, Mitzi DB. Device characteristics of a 10.1% hydrazine-processed Cu2ZnSn(S,Se)4 solar cell. Progress in Photovoltaics: Research Application 2012; 20: 611.
  • 3
    Ki W, Hillhouse HW. Earth-abundant element photovoltaics directly from soluble precursors with high yield using a non-toxic solvent. Advance Energy Materials 2011; 1: 732735.
  • 4
    Gunawan O, Todorov TK, Mitzi DB. Loss mechanisms in hydrazine-processed Cu2ZnSn(S,Se)4 solar cells. Applied Physics Letters 2010; 97: 233506 (3 pages).
  • 5
    Olekseyuk ID, Dudchak IV, Piskach LV. Phase equilibria in the Cu2S-ZnS-SnS2 system. Journal of Alloys and Compounds 2004; 368: 135143.
  • 6
    Katagiri H, Jimbo K, Tahara M, Araki H, Oishi K. The influence of the composition ratio of CZTS-based thin film solar cells. Materials Research Society Symposium Proceedings 2009; 1165: M04-01.
  • 7
    Schorr S. Structural aspects of adamantine like multinary chalcogenides. Thin Solid Films 2007; 515: 59855991.
  • 8
    Chen S, Gong XG, Walsh A, Wei S-H. Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of II-VI and I-III-VI2 compounds. Physical Review B 2009; 79: 165211 (10 pages).
  • 9
    Chen S, Gong XG, Walsh A, Wei S-H. Crystal and electronic band structure of Cu2ZnSnX4 (X=S and Se) photovoltaic absorbers: First-principles insights. Applied Physics Letters 2009; 94: 041903 (3 pages).
  • 10
    Chen S, Yang J-H, Gong XG, Walsh A, Wei S-H. Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu2ZnSnS4. Physical Review B 2010; 81: 245204 (10 pages).
  • 11
    Schorr S, Hoebler H-J, Tovar M. A neutron diffraction study of the stannite-kesterite solid solution series. European Journal of Mineralogy 2007; 19: 6573.
  • 12
    Schorr S. The crystal structure of kesterite type compounds: A neutron and X-ray diffraction study. Solar Energy Materials and Solar Cells 2011; 95: 14821488.
  • 13
    Washio T, Nozaki H, Fukano T, Motohiro T, Jimbo K, Katagiri H. Analysis of lattice site occupancy in kesterite structure of Cu2ZnSnS4 films using synchrotron radiation X-ray diffraction. Journal of Applied Physics 2011; 110: 074511 (4 pages).
  • 14
    Krivanek OL, Corbin GJ, Dellby N, Elston BF, Keyse RJ, Murfitt MF, Own CS, Szilagyi ZS, Woodruff JW. An electron microscope for the aberration-corrected era. Ultramicroscopy 2008; 108: 179195.
  • 15
    Kirkland EJ. Advanced Computing in Electron Microscopy. Plenum Press: New York, USA, 1998.
  • 16
    Gao HX, Peng LM. Parameterization of the temperature dependence of the Debye-Waller factors. Acta Crystallographica. Section A 1999; 55: 926932.
  • 17
    Tanaka K, Miyamoto Y, Uchiki H, Nakazawa K, Araki H. Donor-acceptor pair recombination luminescence from Cu2ZnSnS4 bulk single crystals. Physica Status Solidi A 2006; 203: 28912896.
  • 18
    Hönes K, Zscherpel E, Scragg J, Siebentritt S. Shallow defects in Cu2ZnSnS4. Physica B: Condensed Matter 2009; 404: 49494952.
  • 19
    Romero MJ, Du H, Teeter G, Yan Y, Al-Jassim MM. Comparative study of the luminescence and intrinsic point defects in the kesterite Cu2ZnSnS4 and chalcopyrite Cu(In,Ga)Se2 thin films used in photovoltaic applications. Physical Review B 2011; 84: 165324 (5 pages).
  • 20
    Nitsche R, Sargent DF, Wild P. Crystal growth of quaternary 122464 chalcogenides by iodine vapour transport. Journal of Crystal Growth 1967; 1: 5253.
  • 21
    Krustok J, Collan H, Hjelt K. Does the low-temperature Arrhenius plot of the photoluminescence intensity in CdTe point towards an erroneous activation energy? Journal of Applied Physics 1997; 81: 14421445.
  • 22
    Persson C. Electronic and optical properties of Cu2ZnSnS4 and Cu2ZnSnSe4. Journal of Applied Physics 2010; 107: 053710 (8 pages).
  • 23
    Spence JCH, Zuo JM. Coherent Microdiffraction. Plenum Press: New York, USA, 1992.
  • 24
    Buxton BF, Eades JA, Steeds JW, Rackham GM. The symmetry of electron diffraction zone axis patterns. Philosophical Transaction of the Royal Society 1976; 281: 171194.
  • 25
    Jeanguillame C, Colliex C. Spectrum-image: The next step in EELS digital acquisition and processing. Ultramicroscopy 1989; 28: 252257.
  • 26
    Egerton RF. Electron Energy-Loss Spectroscopy in the Electron Microscope. Plenum Press: New York, USA, 1996.
  • 27
    Peng Y, Nellist PD, Pennycook SJ. HAADF-STEM imaging with sub-angstrom probes: a full Bloch wave analysis. Journal of Electron Microscopy 2004; 53: 257266.
  • 28
    Mendis BG. Electron beam-specimen interactions and their effect on high-angle annular dark-field imaging of dopant atoms within a crystal. Acta Crystallographica. Section A 2010; 66: 407420.
  • 29
    Fox M. Optical Properties of Solids. Oxford University Press: Oxford, UK, 2001.
  • 30
    Wright DR, Bradley D, Williams G, Astles M, Irvine SJC, Jones CA. Minority carrier diffusion length in CdTe. Journal of Crystal Growth 1982; 59: 323331.
  • 31
    Neaman D. An Introduction to Semiconductor Devices. McGraw-Hill: New York, USA, 2006.