• 1
    Jackson P, Hariskos D, Lotter E, Paetel S, Wuerz R, Menner R, Wischmann W, Powalla M. New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%. Progress in Photovoltaics: Research and Applications 2011; 19: 894897.
  • 2
    Chirila A, Buecheler S, Pianezzi F, Bloesch P, Gretener C, Uhl AR, Fella C, Kranz L, Perrenoud J, Seyrling S, Verma R, Nishiwaki S, Romanyuk YE, Bilger G, Tiwari AN. Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films. Nature Materials 2011; 10: 857861
  • 3
    AbuShama J, Noufi R, Yan Y, Jones K, Keyes B, Dippo P, Romero M, Al-Jassim M, Alleman J, Williamson D. Cu(In,Ga)Se2 thin-film evolution during growth from (In,Ga)2Se3 precursors. Materials Research Society Symposium Proceedings 2001; 668: H7.2-1–6.
  • 4
    Nishitani M, Negami T, Wada T. Composition monitoring method in CuInSe2 thin film preparation. Thin Solid Films 1995; 258: 313316.
  • 5
    Negami T, Nishitani M, Kohara N, Hashimoto Y, Wada T. Real time composition monitoring methods in physical vapor deposition of Cu(In,Ga)Se2 thin films. Materials Research Society Symposium Proceedings 1996; 426: 267278.
  • 6
    Niki S, Contreras M, Repins I, Powalla M, Kushiya K, Ishizuka S, Matsubara K. CIGS absorbers and processes. Progress in Photovoltaics: Research and Applications 2010; 18: 453466.
  • 7
    McCandless B. Glancing incidence x-ray diffraction of polycrystalline thin films. Materials Research Society Symposium Proceedings 2005; 865: 7586.
  • 8
    Collins RW, Ferlauto AS, Ferreira GM, Chen C, Koh J, Koval RJ, Lee Y, Pearce JM, Wronski CR. Evolution of microstructure and phase in amorphous, protocrystalline, and microcrystalline silicon studied by real time spectroscopic ellipsometry. Solar Energy Materials and Solar Cells 2003; 78: 143180.
  • 9
    Begou T, Walker JD, Attygalle D, Ranjan V, Collins RW, Marsillac S. Real time spectroscopic ellipsometry of CuInSe2: growth dynamics, dielectric function, and its dependence on temperature. Physica Status Solidi (RRL) - Rapid Research Letters 2011; 5: 217219.
  • 10
    Walker JD, Khatri H, Ranjan V, Li J, Collins RW, Marsillac S. Electronic and structural properties of molybdenum thin films as determined by real-time spectroscopic ellipsometry. Applied Physics Letters 2009; 94: 141908-1-3.
  • 11
    Schock HW. Properties of chalcopyrite-based materials and film deposition for thin-film solar cells. Thin-Films Solar Cells: Next Generation Photovoltaics and Its Applications, Hamakawa Y (ed.). Springer: Berlin, 2004; 163182.
  • 12
    Lautenschlager P, Garriga M, Logothetidis S, Cardona M. Interband critical points of GaAs and their temperature dependence. Physical Review B 1987; 35: 91749189.
  • 13
    Feng GF, Zallen R. Optical properties of ion-implanted GaAs: the observation of finite-size effects in GaAs microcrystals. Physical Review B 1989; 40: 10641073.
  • 14
    Johs B, Herzinger CM, Dinan JH, Cornfeld A, Benson JD. Development of a parametric optical constant model for Hg1-xCdxTe for control of composition by spectroscopic ellipsometry during MBE growth. Thin Solid Films 1998; 313-314: 137142.
  • 15
    Gabor AM, Tuttle JR, Bode MH, Franz A, Tennant AL, Contreras MA, Noufi R, Jensen DG, Hermann AM. Band-gap engineering in Cu(In,Ga)Se2 thin films grown from (In,Ga)2Se3 precursors. Solar Energy Materials and Solar Cells 1996; 41-42: 247260.
  • 16
    Lundberg O. Ph.D. Thesis. University of Uppsala. 2003.
  • 17
    Dullweber T, Hanna G, Rau U, Schock HW. A new approach to high-efficiency solar cells by band gap grading in Cu(In,Ga)Se2 chalcopyrite semiconductors. Solar Energy Materials and Solar Cells 2001; 67: 145150.
  • 18
    Song J, Li SS, Huang CH, Crisalle OD, Anderson TJ. Device modeling and simulation of the performance of Cu(In1-x,Gax)Se2 solar cells. Solid State Electronics 2004; 48: 7379.