High-efficiency copper indium gallium diselenide (CIGS) solar cells with indium sulfide buffer layers deposited by atomic layer chemical vapor deposition (ALCVD)

Authors

  • N. Naghavi,

    1. Laboratoire d'Electrochimie et de Chimie Analytique (UMR 7575), Ecole Nationale Supérieure de Chimie de Paris, 11 rue Pierre et Marie Curie 75231, Paris Cedex 05, France
    Search for more papers by this author
  • S. Spiering,

    1. Zentrum für Sonnenenergie-und Wasserstoff-Forschung Baden-Württemberg, Industriestrasse 6, 70565 Stuttgart, Germany
    Search for more papers by this author
  • M. Powalla,

    1. Zentrum für Sonnenenergie-und Wasserstoff-Forschung Baden-Württemberg, Industriestrasse 6, 70565 Stuttgart, Germany
    Search for more papers by this author
  • B. Cavana,

    1. Institut Lavoisier (IREM), Université de Versailles, 45 Av. des Etats Unis, 78035 Versailles, France
    Search for more papers by this author
  • D. Lincot

    Corresponding author
    1. Laboratoire d'Electrochimie et de Chimie Analytique (UMR 7575), Ecole Nationale Supérieure de Chimie de Paris, 11 rue Pierre et Marie Curie 75231, Paris Cedex 05, France
    • Laboratoire d'Electrochimie et de Chimie Analytique (UMR 7575), Ecole Nationale Supérieure de Chimie de Paris, 11 rue Pierre et Marie Curie 75231, Paris Cedex 05, France.
    Search for more papers by this author

Abstract

This paper presents optimization studies on the formation of indium sulfide buffer layers for high-efficiency copper indium gallium diselenide (CIGS) thin-film solar cells with atomic layer chemical vapour deposition (ALCVD) from separate pulses of indium acetylacetonate and hydrogen sulfide. A parametric study of the effect of deposition temperature between 160° and 260°C and thickness (15–30 nm) shows an optimal value at about 220°C for a layer thickness of 30 nm, leading to an efficiency of 16·4%. Analysis of the device shows that indium sulfide layers are characterised by an improvement of the blue response of the cells compared with a standard CdS-processed cell, due to a high apparent band gap (2·7–2·8 eV), higher open-circuit voltages (up to 665 mV) and fill factor (78%). This denotes high interface quality. Atomic diffusion processes of sodium and copper in the buffer layer are demonstrated. Copyright © 2003 John Wiley & Sons, Ltd.

Ancillary