SEARCH

SEARCH BY CITATION

Keywords:

  • Amyotrophic lateral sclerosis;
  • Cerebrospinal fluid;
  • Fourier transform ion cyclotron resonance mass spectrometry;
  • Liquid chromatography

Abstract

This study demonstrates the power of a novel proteomic approach developed for the detection and identification of biological markers in body fluids. The goal was to observe alterations in the protein patterns of cerebrospinal fluid (CSF) related to amyotrophic lateral sclerosis (ALS), a neurodegenerative disorder with unknown etiology. In the experiments, tryptic digests of CSF from patients and healthy controls were analyzed by on-line capillary liquid chromatography-Fourier transform ion cyclotron resonance mass spectrometry. (FT-ICR MS) Typically, around 4000 peptides were detected in one such experiment, and a pattern recognition program was constructed for the data analysis to distinguish mass chromatograms from patients and controls. This strategy was evaluated comparing the peptide patterns of CSF spiked in vitro with a biomarker, with control CSF. The patterns were clearly separated and the tryptic peptides of the biomarker were successfully selected as characteristic peaks. Hence, the method was applied to compare mass chromatograms of CSF from 12 ALS-patients and 10 matched healthy controls. While no biomarker alone could be identified from the characteristic peaks, we were able to assign 4 out of 5 unknown samples correctly (i.e., 80% correctly diagnosed, 20% false-negative), and it would be 100% if we reject a possible outlier believed to be caused by an occlusion in the spinal CSF compartment. These findings are very promising, although the clinical relevance is not fully established due to the low number of unknown samples analyzed. In addition to the diagnostic potential, these results may be important steps towards understanding the neurodegenerative process.