The proteome and secretome of human arterial smooth muscle cells



Smooth muscle cells (SMCs) play a crucial role in cardiovascular disorders. A differential proteomic approach should help to elucidate SMC dysfunctions involved in these diseases. With this goal in mind, we plotted the first 2-dimensional (2-D) maps of the proteome and secretome of human arterial smooth muscle cell (ASMC). Intracellular and secreted proteins were extracted from a primary culture of SMCs obtained from patients undergoing coronary artery bypass surgery (n = 11) and separated by 2-dimensional gel electrophoresis. Silver-stained gels were analyzed using Progenesis software. A high level of between-gel reproducibility was obtained, allowing us to generate two protein patterns specific to the ASMC proteome and secretome, respectively. A total of 121 and 40 distinct intracellular and secreted polypeptide spots, corresponding to 83 and 18 different proteins, respectively, were identified by matrix-assisted laser desorption/ionization mass spectrometry. The 2-D reference maps and database resulting from this study confirm that SMCs are involved in a wide range of biological functions. They could constitute a useful tool for a wide range of investigators involved in vascular biology, allowing them to investigate SMC protein changes associated with cardiovascular disorders or environmental stimuli.